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Abstract-This paper presents an analytical model for prediction of film condensation on horizontal 
integral fin tubes. The present model accounts for condensation on all surfaces in the flooded and unflooded 
regions, and includes the effect of tin efficiency. However, it is based on quite simple principles, and is applicable 
to hand or computer calculations. The model is applicable to fins of two different basic profile shapes : the 
special continuous profile shapes previously described by Gregorig, Adamek, or Webb, or fins having 
rectangular or trapezoidal cross-sections. The model is validated by showing its ability to predict a wide 
range of experimental data. The data include water, methanol, n-pentane, R-l 1, R-12, R-22 and R-l 13. 
These data for 80 different tube geometries are predicted within f 15%. Predictions by the present model 
are compared with models previously proposed by Webb et al., Honda and Nozu, and Beatty and Katz. 

1. INTRODUCTION 

THIS PAPER presents a model for prediction of film 
condensation on horizontal integral fin tubes. The 
integral fin tubes usually have fins of a trapezoidal 
or possibly a rectangular cross-sectional shape. How- 
ever, Webb et al. [l] and Rudy and Webb [2] have 
shown that surface tension drains the fins. This 
work showed that the fin profile need not have the 
special shapes described by Gregorig [3] or Adamek 
[4] for surface tension drainage to occur. Rudy and 
Webb [2] and Honda [5] showed that surface tension 
also acts to retain a thick layer of condensate on the 
lower side of the tube. Webb et al. [6] and Honda and 
Nozu [I developed theoretical models to predict the 
condensation rate on such finned tubes. Webb et al. 

[6] assumed that the fin profile may be described by 
Adamek’s profile equations [4], while the Honda and 
Nozu model assumed a rectangular fin cross-section. 
Webb et al. neglected the condensation rate in the 
condensate flooded region. Honda and Nozu used a 
numerical solution scheme, which included a meth- 
odology to predict the condensation rate on the fin 
sides and in the base channel for the unflooded and 
the flooded regions. Since the Honda and Nozu model 
requires numerical integration, it is not amenable to 
hand solution. 

The present model may be considered to be com- 
petitive with the Honda and Nozu model in that it 
accounts for condensation on all surfaces in the 
flooded and unflooded regions. However, it is based 
on quite simple principles, and is applicable to hand 

or computer calculations. The model is applicable 
to fins of two different basic profile shapes : (1) the 
special continuous profile shapes as described by Gre- 
gorig [3], Adamek [4], or Webb [8], or (2) fins having 
rectangular or trapezoidal cross-sectional shapes. 

The model is validated by showing its ability to 
predict a wide range of experimental data. The data 
include water, methanol, n-pentane, R-l 1, R-12, R- 
22 and R-l 13. Predictions by the present model are 
compared with the models of Webb et al. [6], Honda 
and Nozu [7], and Beatty and Katz [9]. Beatty and 
Katz were the first to propose a theoretical model for 
integral fin tubes. This assumed that the condensate 
was gravity drained, and that no condensate retention 
existed. 

2. DEFINITION OF CONDENSATION ZONES 

Figure 1 shows an end cross-section view of the 
finned tube. The diameter over the fins is D, and the 
diameter at the base of the fins is D,. The interfin 
region in the shaded portion of the lower tube cir- 
cumference is totally condensate flooded. The flood- 
ing half angle Y 0 is given by equation (l), which was 
independently derived by Rudy and Webb [3, lo] and 
Honda [S] 

Y 0 =cos-’ [1-4al(&V$7)1. (1) 

The condensation is divided into three distinct 
zones. 

(1) The unflooded zone: this is the fraction of the 
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NOMENCLATURE 

area of cross-section of drainage with 
circular shape [m) 
cross-sectional area (for heat 
conduction) at base of fin [m2f 
surface area of fin side [m’] 
surface area of tube at fin root [mZ] 
surface area of fin tip [m’] 
total surface area of tube, Ar+ A,+ A, 

WI 
hydraulic diameter, 4A/P [m] 
tube diameter to the fin root [m] 
tube diameter to outside of the fin [m] 
friction factor for drainage at fin root 
force per unit volume within region L,I. 
[N m-‘1 
property group 4kvATjA w] 
gravitational constant [m s- 3 
condensing coefficient, ht on fins, he in 
flooded region, h, at fin root 
fwm-‘K-‘1 
condensation coefficient at the fin tip 
rJVm-2K-‘] 
height of fin [m] 
heat transfer coefficient based on &b 
~m-zK-l I 
thermal conductivity of condensate 
[Wm-‘K-‘1 
thermal conductivity of the fin 
fWm-‘K-‘] 
length between points x = i and k [m] 
region between points x = i and k 
tube length [m] 
condensate (flow) rate on region L,k 
[kgs-‘m-‘1 
condensate generated on fin tip 
[kg s- ’ m- ‘1 
condensate generated on fin tip for 
infinite fin conductivity [kg s- ’ m- ‘] 
drainage flow rate in z-direction [kg S- ‘1 

condensation rate in flooded region of 
tube [kg s- ‘] 
condensation rate in unflooded region of 
tube [kg s- ‘1 
total condensate rate between points 
x=iandkFgs-‘] 
total condensation rate on tube, A4U4Me 

[kg s- ‘1 
fins/m on tube [m- ‘1 
fin tip Nusselt number, h,h/kw 
wetted perimeter [ml 
pressure difference compared to 
saturation pressure [N m-*1 
total condensation rate on tube, Qprti 
(predicted), Qexp (experimental) Iw] 

heat flow in fin (equations in Appendix 

A) WI 
local radius of condensate interface [m] 
R-S 54r projection of R on side wall from 
point 4 of Fig. 3(c) [m] 
radius of drainage interface at fin root [m] 
space between two adjacent fins, fin 
spacing [m] 
vapor saturation temperature [K] 
surface temperature, TW,r (at fin root), 

T,, (at fin tip) Kl 
temperature difference, T,-- T,, [K] 
fin thickness at the tip [m] 
direction on fin surface from tip to base 

Im] 
condensate film velocity [kg s- ‘1 
direction of drainage flow at tube [ml. 

Greek symbols 
angle in Fig. 3(c) [rad] 
angle in Fig. 3(c) [rad] 
film thickness in section I., [m] 
condensate film thickness in the channel 

bl 
dynamic viscosity of condensate 
{kg s-’ m-‘] 
fin efficiency 
temperature difference, T, - T%,, [K] 
angle at fin tip in Fig. 2 [rad] 
derivative of 8 with respect to .r [K m- ‘1 
temperature difference, Tw., - TM, [Kf 
temperature difference, TWT,- T,, [K] 
curvature of interface [m- ‘1 
derivative of K with respect to s [m- ‘1 
latent heat of vaporization of condensate 

W s kg- ‘I 
kinematic viscosity of condensate 
[m” s-‘1 
density of condensate [kg me31 
surface tension of condensate W m- ‘I 
wall shear stress fr\r m-‘1 
angle in Fig. 1 [rad] 
condensate retention angle in Fig. 1 [radl 

w, CO’, .G angle on fin tip (Fig. 3) [rad]. 

Subscripts 
bot bottom 
drai drainage 
fin fin 
fl flooded area 
sid side 
tip tip 
tub tube 
U unflooded area. 
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FIG. 1. Illustration of condensate retention and definition of 
condensation zones. I, Unflooded zone (u) ; II, flooded zone 

(fl) ; III, drop-off zone. 

tube circumference outside the shaded region of Fig. 
1. It consists of the fin tips and sides, and the base 
tube between the fins. 

(2) The flooded zone : the model assumes that con- 
densation occurs only on the fin tips in the flooded 
zone. Negligible condensation will occur on the liquid 
surface in the interfln region, because the interfin 
region is totally flooded. 

(3) The drop-off zone : as shown by Fig. 1, gravity 
forms a heavy pendant of condensate, which insulates 
the fin tips. Based on experimental observations, this 
is taken to be 10% of the tube circumference. 

It is necessary to develop theoretical equations for 
condensation in the flooded and unflooded zones. 

3. CONDENSATION IN THE UNFLOODED ZONE 

3.1. Structure of the model 
Figure 2 is a sketch of the finned tube in the 

unflooded zone. It defines the geometric dimensions, 
the coordinate system, and the condensate flow 
regions to be modeled. Figure 3(a) shows a detailed 
view of these flow regions. The film surface in Fig. 
3(a) is divided into segments L*. The indices ik define 
the initial point x = i and the end point x = k of the 
region Lit. The lengths of these sections are denoted 
by the terms f,. The expressions ti* define the con- 
densation rates between points x = i and k per unit 
of the tube circumference (the z-direction). The total 
condensation rate on one half of the fin per unit length 
in the circumferential direction is 

(2a) 

The total condensation rate, ti,, is made up of the 
partial contributions at the fin tip Ijllip, at the lateral 
fin side ti,, and at the bottom fibot. Thus 

FIG. 2. Illustration of condensate flow pattern assumed by 
the model. 

WI 

where 

4ip = m02 = rilo,‘+ljz,.2. 

&id = f&, = ril,, +ril,2+n&, 

. . 

mbot = m65 +m54 = m64 

. . 

win = m,ip+maid = rn:.,. (3) 

For the analysis of the radius R of interface at the 
fin base, we need the expression tidrai, denoting the 
sum of all condensation rates, which flow to the fin 
base (Fig. 2) 

ljldrai = &d +riz5,. (4) 

All expressions for titi vary in the circumferential 
z-direction. Figure 2 shows that the condensate &, 
and lj165 do not flow to the fin base. Rather, their 
drainage direction is determined by gravity force. The 
integration of the differential condensation rates 
ritr(z) from the top of the tube (z = 0) to the cir- 
cumferential length z is indicated by the terms &f&(z). 
Thus 

A&(z) = 
I 

‘k,(t) dt. (5) 
0 

If z, = (rr-Y0)D0/2 denotes the unflooded cir- 
cumference of the tube in Fig. 1, the total con- 
densation rate per one half of the fin is defined by 

MU = ni,,(Z,)+~~id(Zu)+nibOt(:U) 

2” 

= 

s 

&p(Z) +&d(Z) fkjlbot(Z) dz. (6) 
0 
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Ci~cnn~ bottorc 
FIG. 3. (a) Cross-section of fin and root illustrating the defined condensate drainage regions (not to scale). 
(b) Detail of fin tip corner: left, rectangular fin; right, trapezoidal fin. (c) Detail of drainage in comer of 

drainage channel. 

The condensation rate in the unfiooded portion of the in region L,,. The surface tension induced pressure 
tube is given by gradient is 

n;lr”b.” = 4N,ti, (7) 

where N defines the number of fins on the tube length. 
The condensate films are drained either by gravity 

or surface tension forces. The key hypothesis of the 
model is to identify the forces, which are active for 
each region Lg. Once the dominant force is identified, 
one may calculate the film thickness associated with 
the particular L, region. For laminar film conden- 
sation, the local condensation coefficient is h = k/6, 
where k is the thermal conductivity of the condensate, 
and 6 is the local film thickness. Hence, if the local film 
thickness can be calculated, the local condensation 
coefficient is easily determined. 

3.2. Basic equations for calculation offilm thickness 
For gravity drained laminar film condensation on 

an inclined plate of length I, Nusselt [l I] showed that 
the local film thickness at .Y = I is given by 

6(l) = [FP - I/pg - cos Y] ’ 4 (8) 

where FP zz 4kvAT/l.. The condensate generated on a 
plate of length I is 

tit(!) = 0.943[(kAT-f/i.)3(pg/v) -cos Y] ‘.‘4 (9) 

where Y is the angle of the plate relative to the vertical 
direction. 

Now consider calculation of the film thickness, 
if surface tension is the dominant drainage force 

dp/ds = - od( 1 ,‘r)!‘ds (lOa) 

where r is the local radius of the condensate interface. 
We will assume that a linear pressure gradient exists 
in all such surface tension drained regions. Hence, for 
a generalized region L,i 

dp/ds =f;k = -a[(l/r,)-(]/ri)l/lik (lob) 

where r, and r, are the radii at the beginning and end 
of the length l,, respectively, and Jk symbolizes the 
pressure gradient for region L,,. This simple modeling 
concept was initially proposed by Rifert [12] and was 
used by Rudy [ 131 to model the surface tension drain- 
age gradient on integral fin tubes. 

One may modify equations (8) and (9) to apply to a 
surface tension drained plate of length I,,. The gravity 
force per unit volume in equation (8) (pg *cos Y) may 
be replaced by &, equation (lob). The length over 
which equation (lob) applies, &, corresponds to I in 
equation (8). The result is 

&,J,,) = V’p(L/Yk)l ’ ’ 

riz(/,) = 0.943[(kAT/E.)3f;,f.$‘v]’ ‘, 

ik = 01’, 01 and 54 

(11) 

/iz(l,J = T s !r /< 
~ d.r, 

i 0 S,,(s) 
ik = 12 and 23. 

(12a,b) 
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Equations (11) and (12) may be used to calculate the 
film thickness and condensation rate in each of the 
surface tension drained regions L. of Fig. 3(a), if & 
and 1, can be defined for each region. 

3.3. Specification of forces governing film flow in 
regions Lik 

Figures 2 and 3 will be used to establish the drainage 
forces acting in regions Lk. The fin shape is shown as 
rectangular, but the model may be equally applied 
also to trapezoidal fins. The comer of the fin tip is 
assumed to be circular with radius R,, as shown in 
Fig. 3(a). Hence the interface changes within the 
sections L,,, and Lo,, from a circular to a linear 
shape, which is associated with a pressure drop of 
Ap -A II,‘_ PO! = a/R0 (Fig. 4). Neglecting gravity in 
these sections, the film flow is governed by surface 
tension force and follows the x-direction. 

In region L,.y the interface is linear and the surface 
tension forces are small compared to gravity. Hence 
the condensation process is gravity dominated, and 
the film flows approximately in the circumferential 
direction. 

Gravity also dominates in section L, 2. If we define 
a circumferential angle Y = 22/D, (Fig. I), then we 
may express the forces in the x-direction and the z- 
direction by the terms pg cos Y and pg sin Y, respec- 
tively. Thus, the direction of the film flow is defined 
by the vector (cos Y, sin Y). 

Between points 2 and 3, the interface changes from 
a linear to a circular shape, which is associated with 
a pressure drop of magnitude Appz3 = a/R (Fig. 4). 
Hence, the condensation process in LZ3 is governed 
by surface tension, and the film flow is assumed to 
occur in the x-direction. 

The area L,, at the fin base is assumed to be the 
drainage center. Although the interface changes to a 
concave shape, the radius R of curvature remains 
constant. So, the pressure drop between points 3 and 
4 remains zero, and the drainage flow occurs only in 
the circumferential z-direction. 

In contrast, between points 4 and 5 the interface 
changes from a circular to a linear shape, which is 
associated with a pressure drop Apps4 = a/R. Note that 

the pressure at point 5 is higher than at point 4, which 
causes the film to flow into the comer. 

Finally, the interface in the region Ls5 remains 
linear, so the flow is gravity dominated, and the film 
flows in the circumferential z-direction. 

Note that the condensate from regions LO ,, L, 2, Lz3 
and L5,, accumulates in the comer at the fin base. 
Accordingly, the interface radius in the comer, R, 
increases in the :-direction. So, the lengths 1, in 
regions Lik vary with respect to the variable z. 

3.4. Calculation of condensation rates rig,, and rho,, 
As shown in Fig. 3(b), the comer of the fin tip is 

assumed to be circular with radius Ro. In the real case, 
the shape may not be exactly circular, but a small 
radius R. will exist at the curved fin edge. We will 
assume a linear pressure decrease Ape, = a/R, and 
Ape,. = a/R0 from the center of radius to the lateral 
fin wall and to the fin tip, respectively. This results in 
the linear curvature gradient shown in Fig. 4 for 
regions LoI and Lo, . The film radius becomes infinite 
(zero curvature) at the inflection points, 1 and 1’. 
Using equation (lob), we obtain for the pressure 
gradients 

fo, = dR,lo,, fou = dRolo,- (13a,W 

The angle o is equal to the change of curvature over 
I,,,. As shown by Fig. 4, this curvature change is the 
area under the triangle bounded by 1/R,, and lo,,. 
Thus, lengths lo, and lo ,, are calculated by 

lo, = 2R,o’, lo,. = 2R,w. (140) 

The case of rectangular and trapezoidal fin shapes 
are shown in Fig. 3(b). For rectangular fins, 
w = w’ = n/4, and for trapezoidal fins, o = x/4, and 
W’ = n/4-w”. Substitution of equations (13a) and 
(14a) in equations (11) and (12) gives 

6,,(x) = l.189[FP(R~o’x/a)]“4, 

6,,(x) = l.l89[F,(R;o~/a)]“~. (15a,b) 

Application of equation (12) gives 

I curvature 
l/R‘, 

F Il.1' I12 

2’ 
--1101~ (’ 101 I- 
-l/R ,, 

FIG. 4. Curvature of the condensate film in the drainage regions defined in Fig. 3. 
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ni,, = 1.332[(kATfi)3(aRow’2/v)]L!“, 

&,,, = 1.332[(kAT/i.)3(aR,w’lv)J”“. fl6a,b) 

depend on R, which leads to a complicated iterative 
solution. However, a good approximation is possible 
by noting that tit,, is the main cont~butor to fjldnrr and 
that R(z) is not very sensitive to ni,,,. This procedure 
involves the following steps. 3.5. ~a~~ular~~n of radius R at the fin root 

The determination of the condensation terms ti, 2, 
m23, ti5, and rit,, depend on the condensate radius R 

at the fin root. Gravity drains the condensate at the 
fin root in the circumferential t-direction. This mass 
flow rate is defined by the continuity equation 

&i(z) = p’ 10(z) * A(z) (17) 

where the average film flow velocity w(z) in the cir- 
cumferential :-direction is governed by 

and 

z, =f(pk?/2) = (A/P)pg*sin Y (18) 

f = 12/Re = 12v/(rl,w) (19) 

where 7, is the wall shear stress on the surface area 
P-d; balanced by the film weight [A *dz.p.g*sin Y]? 
with wetted perimeter P = ZR and cross-section A = 
0.215R2 for rectangular fins. The expressions for 
A and P are calculated from the geometry of the 
circular interface at the fin base. The number 12 in 
equation (19) is taken from Thomas [14]. From equa- 
tions (17)-(19) we obtain 

and 

~8 = @d,$ - sin Y)/24v (20) 

G(z) = O.O017[pg+sin UT - R4(z>/v] (21) 

where dH = 4AjP = 0.43 R. 
Note that the drainage mass flow is related to the 

fourth power of R(z), so imprecision in the calculation 
of iLj(z) will yield a very small error in R(z). If the fin 
has a radius at the root, the shape at the base is circular 
rather than rectangular, so we may replace the number 
12 in equation (19) by the number 14.25, as specified 
by Honda et al. [15]. A finite element analysis for the 
dete~ination of the drainage mass fiow was per- 
formed to verify both numbers. For the rectangular 
and circular cases, we obtained the numbers 13.2 and 
15.3, respectively. The radius R is obtained by equat- 
ing equation (21) with the sum of the condensation 
rates that flow into the fin root region, &d,,i. 

From equations (4) and (21) we obtain 

(1) Estimate tidrai = 1.3f~&,. 
(2) Calculate R(z) by equation (22) with the inte- 

grand replaced by 1.3+,,(t). 
(3) Analyze the lengths f,*(:), 1&c), f54(z), f&), 

11.2(z) and the corresponding condensation rates 
&Jr) using R(z) obtained from the modified equation 
(22). This allows calculation of &, and ti5.,. 

(4) Using the known tiSid and rir$,. use equation 
(22) as given to recalculate R(z). 

The analysis for step 3 above is described in the 
next section. 

3.6. Cot~d~ns~t~~n rate on thefin und base 
Calculation of the condensation rate on the sides 

and at the fin base requires specification of I,z, iI,, iS4, 
lb5 and R illustrated in Fig. 3(a). The model assumes 
that ft3 and IS4 are surface tension drained, and that 
1,2r flJ and ies are gravity drained. The basis of these 
assumptions is illustrated in Fig. 4. The &, which have 
constant curvature are gravity drained. With these Iii 
and R known, we may use equations (12) and (16) to 
calcufate the associated ti,,. The 1,) terms may be 
related to the fin dimensions t, /I, Band the fin spacing 
s as shown below 

t/2 = R,+fi 2’ (23) 

h = cosO(R,+1,2+123+R*+A) (24) 

where A is the condensate thickness at the fin root. At 
the fin root 

si2=hsin0_5R*+lj~+lgj (25) 

where Ii* E R-6 jq = R cos /I, as shown by Fig. 3(c). 

Using the linear pressure gradient assumption. the 
area of the K-i,, triangle in Fig. 4 yields the relation 
/? = (1,,/2)(1/R), where j is the area under the tri- 
angle. Thus 

R* = R cos (f,,iZR). (26) 

The Appendix of Adamek and Webb [16] shows that 

I?, = l54 = 4[FpR5,~a] ’ 6. (27) 

Using the known R. and 1?3r I,, and II* from equa- 
tions (26) and (27) one may solve equations (23)- 
(26) for i1.2.r I,* and I,,. 

Unfortunately, the expressions ri?,*, tiz3 and ms4 

With the I, known, one may directly write the forces 
_&. acting on each 15)~ region. Linear surface tension 
pressure gradients acting on Lo,, LO,., LX and LgJ 
yield 

Jo,. = a/R&,, (13a) 

fo, = a;!R&,,- (13b) 

fz3 = rrjR1,; w 
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fs4 = d&. (29) 

Region L12 is gravity drained. The gravity force 
components in the x- and z-directions (pg ‘COS Y 

and pg*sin Y, respectively) change with the cir- 
cumferential angle Y. A rigorous analysis would 
require solving for the film thickness in the streamline 
direction, resulting from the two force components. 
However, previous analysis by Adamek [I 7j has 
shown that this complication is not warranted. For a 
condensation process governed by two perpendicular 
forces, the analysis showed that the calculated film 
thickness in one coordinate direction is nearly inde- 
pendent of the other force. The present model will 
calculate the x-component of the average gravity 
force, which gives 

fl2 = ;%” pgcosIj,d$=fpg. (30) 

The gravity force in regions L 1.2’ and Ls5 act on the 
fin tip and on the base tube, respectively. The single 

3.7. Integration over z in the unflooded region 

gravity component is pg * sin Y, which results in 
The total z-length over which the solution is 

required is 

f,.2. = pg.sin Y (31) 

fe5 = pg.sin Y, (32) 

The film thickness equations for the surface tension 
drained regions is obtained by substituting the 1, and 
& terms in equation (1 I), giving 

Z” = D,(n-Y,)/2. (38) 

6,,(x) = (2F&w’x/a)“4 

6,,.(x) = (ZF,R;ox/o) 4 

(Isa) 

(15b) 

C&,(S) = [(3v~ozR123/a)J’3+FpR123~/ff]“4 (33) 

b,,(x) = (F,R~,,,+J)“~. (34) 

Equation (33) includes two terms on the right-hand 
side. The first term accounts for the fact that L,, 
receives flow from region LIZ. The supporting deri- 
vation of equation (33) is provided in Appendix 1 of 
Adamek and Webb [16]. 

We will perform the integration by solving the I& 
equations over P-increments in the zidirection and 
calculating the total condensation rate ni, in each 
increment. The total condensation rate in the un- 
flooded regions is the sum of the Pi values for each 
increment. The integration will start at the top of the 
tube (z = 0), and the values of R and 6, will be 
assumed constant within the increment. Assuming 
that the Ijl,id+tij4 = I .3rit0 ,, equation (22) simplifies 
to equation (39) for the initial estimate of R for the 
first z-increment 

1’4 

R( ” = lim 

The film thickness for the gravity drained regions 
is obtained by substituting the lik and l;k terms in 
equation (8) giving 

(39) 

812 = {(3vn~o,/2Pg)“3 + [F&/2pg)x]} ‘i4 (36) 

66, = B&z) = 

Equation (36) also contains two terms on the right- 
hand side. This is because L, 2 receives condensate 
from LO,. 

With equations for & specified, the condensate gen- 
erated in each La may be calculated. Equation (12a) is 
used for surface tension drained regions L,, ,., LOI and 
Ls4. Regions L12 and LZ3 receive condensate flow 
from upstream. Hence, their condensation rates are 
calculated using equation (12b). with &(x) given by 
equations (33) and (36). Regions L,,T and Lh5 are 
gravity drained in the z-direction. Their condensation 
rates are given by equation (5) with &(f) = G(r)* 
AT/;! * k/d,,(t) and Bik from equations (35) and (37). 

The concave radius R varies in the circumferential 
. . 

direction (z). Hence, m,.2.r m,2, tiz3, hS4 and r& will 
vary in the z-direction. Evaluation of these terms will 
require incremental calculations. 

Equation (39) includes the approximation 

lim_Y= 1. 
v-osiny (40) 

With the estimated R for the first increment known, 
equations (23)-(27) are solved for R* and the required 
lik. The corresponding f* and ~5~~ are then obtained 
from equations (13a), (13b), (15a), (lSb), and (28)- 
(37). Application of the previously specified equations 
for fik yields the tiik values. Finally, summation of the 
ti, provides QU for the first z-increment. For greater 
precision, one may repeat the calculation for the first 
increment using equation (22) to calculate R. 
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The starting value of R for the second z-increment is 
calculated using the converged @id+ti~~ in equation 
(22). This procedure is repeated for ail succeeding -_- 
increments. Finally, the total condensation rate in 
the unflooded region (ni,), per one half fin is the 
summation of the incremental ni, values. The con- 
densation rate on the unflooded portion of the total 
tube length is 

~kib.” = 4NL,Cj, (41) 

where N is the fins/m and L is the tube length. 

3.8. Inclusiort ofjin eficiency 
The above analysis has assumed that AT = con- 

stant on all of the L,i. The accuracy will be improved 
by accounting for the change of fin temperature along 
the fin length. thus accounting for fin efficiency. vi, 
This development is presented in Appendix A. Then. 
the condensation rate on the fin is expressed by 

The model assumes that condensation regions Lz3 
and L , z both exist on the fin sides. However, if the 
tube diameter is large, or the condensation rate is 
high, it is possible that either of these two regions may 
not exist on some portion of the tube circumference. 
Thus, as the tube circumference is progressed, R, as4 
and 665 will increase. The first region to disappear is 
L 23, followed by L,,. Appendix B provides criteria 
for determination of which regions will exist. These 
criteria may be included in the computer program. 

It is probable that ATin the flooded and unflooded 
regions are different. It is possible to account for this 
difference. However, one must expand the concept of 
the model to account for circumferential conduction 
in the tube wall. This also requires specification of a 
tube side heat transfer coefficient. Honda and Nozu 
[?] outlined the methodology for doing this. 
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FIG. 5. Evaluation of the ability of the proposed model to predict the condensation rate on 80 tube 
geometries for seven fluids. (Qpred - Q&!QeXp vs fins/m. 
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4. CONDENSATION IN THE FLOODED 

REGION AND THE TOTAL CONDENSATION 

RATE 

As shown by Fig. 2, the interlin region is totally 
flooded with condensate for Y > Yw However, con- 
densation will occur on the fin tips. Further, it is 
assumed that the previously described drop-off zone 
accounts for 10% of the tube circumference. The fin 
tips are covered with a heavy condensate thickness, 
so no condensation will occur on the fin tips. The 
fraction of the flooded region outside of the drop-off 
zone is called the ‘active’ flooded region. The con- 
densation rate in the active flooded region, per one 
half fin, is given by 

ni, = (0,/2)(Y’,-o.lrc)(~,,~+~~,,). (43) 

Having computed the total condensation rate in the 
unflooded region, ti”, and the flooded region, h?,,, the 
total condensation rate on the tube is 

h&,b = 4NL(i\;l, + n;i,). (44) 

The heat transfer rate is Q = &f,,,/n. The heat trans- 
fer coefficient may be derived from the predicted value 

of nitub. This is done as follows : 

h tub = t?/(hb~AT) (45) 

where ,‘t,,, is the total surface area and is composed 
of 

A tub = WA,+Ar+AA (46) 

and Af, A, and A, are the surface areas of the fin side, 
root and tip, respectively. 

Equation (45) assumes g, = 1.0. If the fin efficiency 
is not one, one should calculate the heat transfer 
coefficients associated with the fin (hr), root (h,) and 
flooded (hR) regions. The surface efficiency is then 
defined as 

rl = [(rlrhrAr+hJ,)(n-‘I”o) 

+hnA,(Y,-O.lrr)]/(A,+A,). (47) 

Equation (47) assumes that the fin efficiency in the 
flooded region is one. If qr < 1, one should divide 
equation (45) by the surface efficiency, II. 

5. VALIDATION OF THE PREDICTIVE MODEL 

Figure 5 shows the ability of the model to predict 
the condensation rate on horizontal integral fin tubes. 
The data bank includes data on 80 tube geometries 
from 14 different investigators and seven different 
fluids. Table 1 lists the data sources, the fluids, and the 
key fin dimensions. The table also shows the AT for 
the predicted point, and the calculated fin efficiency 
at the point. The fluids include water (high surface 
tension) and refrigerants (low surface tension). The 
range of the geometries and fluids tested include : 

(I) Fluids: water, methanol, n-pentane, R-l 1, 
R-12, R-22 and R-113. 

I I 

Data: Wart0 et 01 119181 h : 1.0 mm 

9- t =l.Omm 

8 c 
Beotty & itotz (19181 
theory 
j Adomek & Webb 

Hondo et 01. tt987) 

_I Areo ratio I 

I I I 
0 1 2 3 

s (mm1 

FIG. 6. Evaluation of the ability of various models to predict 
the R-113 data of Marto et al. [19] on 1 mm high x 1 mm 

thick rectangular fins, for 200-800 fins/m. 

(2) Fin spacing at base : 0.0610 mm. 
(3) Fin height: 0.29-3.6 mm. 
(4) Fin thickness : 0.06-I .O mm. 

Figure 5 shows the ratio (QPrrd-Qsxp)/QeXp vs 
fins/m, where subscripts pred and exp are the pre- 
dicted and experimental values, respectively. The 
model was adapted to account for the appropriate fin 
shape (trapezoidal or rectangular) and fin efficiency 
was included in the calculation. Except for six data 
points, the data are predicted within + 15%. We feel 
that this agreement with the data is very good, con- 
sidering the following uncertainties in the data : 

(1) The fin tip radius R, was not generally given by 
the authors. The predictions assumed R,, = 0.05t. 

(2) Some of the authors did not precisely describe 
their fin geometry. Missing dimensions included the 
fin tip radius, the radius at the fin root, and the spacing 
at the fin root. 

(3) In general, the fin thermal conductivity was not 
given for the tubes, all of which were copper. We 
assumed a value of 350 W m-* K-‘. 

(4) Uncertainty regarding the fluid properties used 
by the different investigators. Krauss and Stephan [ 181 
have observed that there is a significant difference in 
the reported property data of the refrigerants. For 
example, published thermal conductivity data for 
R-l 13 at 300 K differs from 0.67 to 0.9 W m-* K-i. 

Figures 6 and 7 show the ability of the model to 
predict the effect of fin spacing for 1.0 mm fin height 
fins of rectangular cross-section for the R- 113 data of 
Marto et al. [ 191. Figure 6 is for 1 .O mm fin thickness, 



T
ah

lc
 

1.
 T

es
t 

da
ta

 p
re

di
ct

ed
 

(f
ix

ed
 d

im
en

si
on

s 
: 

R
, 

=
 &

O
S/

,, 
w

 
=

 n
/4

 
ra

d)
 

A
u!

ho
r(

s)
 

Fl
ui

d 
n,

 
__

 
_ 

__
.. -_

__
._

__
._

__
_.

.-
^_

_.
. 

. 
..-

.. 
._

~
_ _-

-.
.. 

-.
 

- 
-.

..-
 

R
-1

13
 

21
.0

 
R

-I
 1

3 
21

.0
 

R
-l

 1
3 

21
.0

 
R

-l
 I

3 
23

.0
 

R
-l

 1
3 

21
.0

 
R

-l
 1

3 
22

.0
 

M
as

ud
a 

an
d 

R
os

e 
[2

0]
 

R
-l

 I
3 

12
.7

 
H

on
da

 a
nd

 N
oz

u 
[2

31
 

R
-1

13
 

15
.8

 
R

-1
13

 
17

.0
 

R
-1

13
 

16
.8

 
W

an
ni

ar
ac

hc
hi

 
el

 (
11

. [2
1]

 
W

at
er

 
19

.0
 

W
at

er
 

19
.0

 
W

at
er

 
19

.1
 

W
al

er
 

19
.1

 
Y

au
 P

I a
l. 

(2
21

 
W

at
er

 
14

.7
 

H
on

da
 a

nd
 N

oz
u 

[2
4]

 
M

et
ha

no
l 

15
.8

 
M

et
ha

no
l 

17
.0

 
M

et
ha

no
l 

16
.8

 
K

at
z 

an
d 

G
is

t 
[2

5]
 

W
at

er
 

15
.8

 
B

cn
tty

 a
nd

 K
at

z 
[9

] 
n-

Pe
nt

an
e 

15
.8

 
R

-2
2 

15
.8

 
R

-2
2 

19
.5

 
I I

cn
ri

ci
 [

26
] 

R
-1

2 
15

.9
 

R
-1

2 
19

.0
 

R
-1

2 
20

.0
 

R
-1

2 
20

.0
 

W
ch

b 
1’

1 ~
1.

 (6
) 

R
-1

1 
15

.9
 

R
-l

 1
 

15
.9

 
R

-l
 I

 
17

.2
 

Su
kh

at
m

e 
E

d r
ti.

 1
27

) 
R

-1
1 

23
.4

 
R

-1
1 

22
.4

 
R

-I
I 

22
.8

 
R

-1
1 

22
.6

 
R

-I
I 

23
.4

 
- 

__
_-

 

Sh
ap

ct
 

It 
(m

m
) 

-_
 

R
 

R
 

R
 

R
 

R
 

R
 

: T
 

R
 

R
 

R
 

R
 

T
 

R
 

T
 

T
 

R
 

T
 

T
 

T
 

T
 

T
 

7 T
 

1 T
 

T
 

T
 

T
 

T
 

T
 

T
 

T
 

-.-
 

I I I 2 0.
5 1.
5 

1.
6 

1.
46

 
0.

92
 

1.
13

 
I I 1 I I.

6 
1.

46
 

0.
92

 
1.

13
 

I .
52

 
1.

46
 

I.
46

 
3.

54
 

I .
32

 
I.

38
 

2 3.
6 

1.
5 

0.
89

 
0.

89
 

0.
46

 
0.

7t
 

0.
92

 
I .

22
 

0.
46

 

1,
 

hl
 

(m
m

) 
(m

m
) 

Fi
ns

/m
 

(%
 

V
I 

1 0.
5 

0.
75

 
1 1 I 0.

5 
0.

28
 

0.
18

 
0.

1 
I I 0.

5 
0.

01
7 

0.
5 

0.
28

 
0.

18
 

0.
1 

0.
36

 
0.

33
 

0.
33

 
0.

34
 

0.
30

 
0.

30
 

0.
50

 
0.

36
 

0.
2 

0.
3 

0.
2 

0.
09

 
0‘

09
 

0.
09

 
0.

09
 

0.
09

 

0.
4 

0.
3 

0.
5 

0.
4 

0.
3 

0.
6 

0.
h 

0.
6 

0.
9 

0.
45

 
0.

45
 

0.
29

 
0.

25
 

0.
34

 
0:

41
 

0.
52

 
0.

42
 

20
0,

33
3,

40
0,

66
7,

8(
H

) 
40

0,
50

0,
66

7,
 

10
00

, 1
33

3 
x4

,4
44

,5
7 

I *
 8

00
 

33
3,

40
0,

 
50

0 
33

3,
40

0 
33

3,
40

0,
50

0 
40

0,
50

0,
66

7,
10

00
 

10
20

 
15

51
 

20
00

 
10

0,
20

0,
35

0,
40

0,
50

0,
66

7 
10

0,
20

0,
35

0,
40

0,
50

0,
66

7 
50

0 
50

0 
Y

5,
 1

54
,2

22
,4

00
,5

00
,6

6?
, 

10
00

 
10

20
 

15
51

 
20

00
 

63
0 

bO
8 

60
8 

21
0 

17
0 

56
t 

43
5 

39
6 

74
8,

 1
02

0 
74

8 
I3

78
 

14
17

 
14

17
 

14
17

 
14

17
 

14
17

 

15
 

IS
 

15
 

15
 

15
 

I5
 

10
 

5 5 5 30
 

10
 

27
 

27
 

25
 5 5 5 

42
 

33
 

20
 

20
 5 5 5 5 5 5 5 5 5 5 5 5 

0.
99

 
0.

98
 

0.
99

 
0.

98
 

0.
99

 
0.

98
 

0.
97

 
0.

96
 

0.
97

 
0.

92
 

0.
88

 
0.

87
 

0.
83

 
0.

81
 

0.
76

 
0.

87
 

0.
90

 
0.

81
 

0.
81

 
0.

97
 

0.
97

 
0.

95
 

0.
96

 
0.

97
 

0.
86

 
0.

88
 

0.
96

 
0.

97
 

0.
96

 
0.

98
 

0.
98

 
0.

98
 

0.
98

 
0.

98
 

- 

ii 48
 

4x
 

48
 

48
 

48
 

48
-6

7 
48

-6
7 

48
-6

7 
lo

o 
10

0 
10

0 
10

0 
10

0 
65

-7
6 

65
--

76
 

65
-7

6 
43

 
43

 
19

 
30

 
35

 
35

 
35

 
3.

5 
35

 
35

 
35

 
35

52
 

35
-5

2 
35

52
 

35
-5

2 
35

-5
2 

W
I 

(r
ad

) 
--

 0.
78

5 
0.

78
5 

0.
78

5 
0.

78
5 

0.
18

5 
0.

78
5 

0.
78

5 
0.

74
4 

0.
72

0 
0.

78
5 

0.
78

5 
. 

0.
78

5 
0.

78
5 

0.
54

8 
i 

0.
78

5 
x 

0.
74

4 
z 

0.
72

0 
P 

0.
78

5 
P 

0.
71

0 
!-

 
0.

69
3 

0.
69

3 
<

 

0.
71

0 
E

 

0.
70

2 
0.

70
2 

0.
73

5 
0.

61
3 

0.
61

 I 
0.

61
1 

0.
61

1 
0.

44
 I 



Fii condensation on horizontal integral fin tubes 1731 

‘“------I I” oata: t&o et OiiSSSl hZ l.Omm 

9- t : 0.5 mm 

8- 
Beotty e Kotz I1968 1 
theory 

Adomek & Webb 

Honda et 01. ( 19871 

Areo ratio 

1985 1 

1 
t 
I 

OO 
I I 

1 2 3 
s (mm1 

FIG. 7. Evaluation of the ability of various models to predict 
the R- 113 data of Marto ef 41. [19] on 1 mm high x 0.5 mm 

thick rectangular fins, for 4004333 fins/m. 

and Fig. 7 is for 0.5 mm thickness. The ordinate is the 
enhancement ratio Q/Qr, where QP is for a plain tube 
of outside diameter D,. The value of AT is the same 
for the plain and finned tubes. The present model 
shows excellent ability to predict the data. Also shown 
in Figs. 6 and 7 are predictions for the models of 
Honda and Nozu [7], Webb et al. [6] and Beatty and 
Katz [9]. The Beatty and Katz model assumed gravity 
drainage and no condensate retention. The present 
model is superior to the other models. The figures also 
show that the highest performance occurs for fin 
spacings in the range of 0.5 mm. For the same fin 
spacing, the 0.5 mm thick fins give higher perform- 
ance. This occurs for two reasons : (1) the condensate 
retention angle is larger for the thicker fins, and (2) 
because the fins/m is less for the greater fin thickness. 
Figure 6 shows that the increasing condensate reten- 

Fluid R113 

\Wl 

; I 
0' 

.--I 

1 2 Imml 3 

s (mm) 

FIG. 8. Evaluation of the ability of the proposed model to 
predict the R-l 13 data of Masuda and Rose [20] on 1.6 mm 
high x 0.6 mm thick rectangular fins, for 600-1000 fins/m. 

tion angle causes a smaller enhancement ratio for the 
s = 0.25 fins than for the s = 0.5 mm fins. As the fin 
spacing decreases, for constant fin thickness, there is 
a greater possibility for a thick condensate layer to 
exist at the fin base. Therefore they will be negligible 
on the root dimension of the tube. 

Figure 8 shows that the model does an excellent job 
of predicting the R-113 data of Masuda and Rose 
[20]. These fins have a rectangular cross-section. 

Figure 9 compares the predicted and experimental 
Q vs fin spacing for the steam data of Wanniarachchi 
et al. [21] and Yau et al. [22]. These data are for 
rectangular fins having h = t = 1 mm. The greatest 
uncertainty in the prediction occurs for fin spacings 
at which the interface root radius (R) approaches s/2. 
As the fin spacing is reduced, condensation on the 
tube root surface becomes negligible, whereas at a 
higher fin spacing there is a relatively high conden- 
sation on the root surface. 

The steam data of Wanniarachchi et al. [21] are 
used to validate the ability of the model to predict the 
effect of tin height for 1.0 mm fin spacing and thick- 
ness. The excellent agreement validates the use of 
equation (32) to predict the drainage in region Le5 by 
a gravity drained model. Again, the present model 
shows better predictive ability than the other models, 
as shown in Fig. 10. 

W m’KJ ;. .‘y.,,, 

simml 

FIG. 9. Evaluation of the ability of the proposed model to predict the steam data of Wanniarachchi et al. 
1211 and Yau et af. [22] on 1 mm high x 1 mm thick rectangular fins, for 95-1000 fins/m. 
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FIG. 10. Evaluation of the ability of various models to predict 
the R-l I3 data of Marto et al. 1191 on I mm rectangular fins. 

for 0.5, I, 1.5 and 2 mm fin heights. 

6. CONCLUSiONS 

(1) This paper presents a simple, analytically based 
model to predict the condensation coefficient on hori- 
zontal, integral fin tubes having fins of rectangular or 
trapezoidal cross-section. The mode: divides the fin 
profile in&o severa! surface tension or gravity drained 
regions. 

(2) The model was validated by evaluating its ability 
to predict the data of seven different fluids on 80 
different finned tube geometries. The model was 
shown to predict 74 of the tubes within + 15%. 

(3) Theoretical relations are also provided to 
account for the effect of fin efficiency in the cal- 
culations. 
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APPENDIX A. FIN EFFiClENCY FOR 
RECTANGULAR OR TRAPEZOIDAL FINS 

Analytical expressions for the temperature distribution in 
rectangular lins are developed. The results can be applied to 
trapezoida fins by using the average fin thickness. Separate 
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fin efficiency expressions are required for the flooded and the 
untlooded regions. 

The following assumptions were used to define the prob- 
lem and simplify the solution : 

(1) Steady state heat transfer. 
(2) One-dimensional heat conduction in the fin. 
Q) The vapor su~ounding the fin is saturated and of 

uniform temperature. 

LJnJIooded region 
Fin efficiency calculations usually assume the heat transfer 

coefficient is constant over the fin length. We do not use this 
assumption. Surface tension drained condensation typically 
has large heat transfer coefficients at the fin tip, and small 
heat transfer coefficients at the tin root. The assumption of 
a constant heat transfer coefficient will overpredict the heat 
transfer to the fin. Our analysis calculates the local con- 
densation coefficient as k/~?(x), where 6(x) is the local con- 
densate film thickness. 

An energy balance on a differential element of the rect- 
angular fin yields 

where k, is the thermal conductivity of the fin, t is the fm 
thickness, and 9 = T,,,- T,. Equation (Al) states that the 
heat of condensation rate entering the differential element is 
equal to the difference between the heat conducted into and 
out of the incremental volume. 

Equation (Al) is first solved for region Lot, with x 
measured from point 0. Solving equation (Al) for the tem- 
perature gradient in the fin at location x gives 

642) 

The film thickness So&) in region L,,, is given by equation 
(Isa) in the text. Recognizing that both x and AT m B are 
functions of x, we write equation (ISa) as 

Substitution ofequation (A3) for S(x) in equation (A2) gives 

Let the grouping of constants in equation (A4) be defined 
as 

WI 

Evaluation of the integral on the right side of equation (A4) 
gives 

Substitution of equation (A@ in equation (A4) gives the 
following differential equation 

(A71 

where 

3 4co 4’J 

c”=;T-3- * 0 

Substituting~~x[e)J E t?‘(x) inequation (A7) and integrating 
from x = U yields 

d@ 
P(e) = - = tip;;“+ 1 

dx 
&I (ez-~~))317 (A9) 

where p0 and & denote the initial conditions at the fin tip 
(x = 0) 

and 

8, = AT@ = 0). @[iI 

The relation between the temperature diierence e E T,- 
T’and the x-coordinate is obtained by substituting equation 
(A9) in equation (A12) and performing the integration 

x(ef = 
e I d -de. ,pm 6412) 

When the heat flow in the fin crosses from region Lo, into 
region L,,, we start the anaiysis again, replacing the fo, and 
6,, by frr and c&. The film thickness formula for 6r z also 
contains an additional constant, which accounts for the film 
thickness at point x = /,,. However, this constant is cancelled 
by the diffe~ntiatio~ process, hence the analysis for Lo2 is 
analogous to that for L,,. 

Similarly, when the heat flow within the fin crosses the 
L12-L23 boundary, we replace ft2 and ~3,~ by f2: and ~5s~ If 
wedenote the heat flow in thefinat point 3 fx = I,, +I, ,+I,,) 
by qYCt (actual q) and compare to i,,,_ (maximum q for ae% 
temperature gradient in the fin), we obtain the fm efficiency, 
which is defined as 

‘Ir = %Jrim.i- (AL3) 

The qma. is given by 

4 - (rir,.~+~,,,t-herf~,t+tjlZ~)jj_ mnr - (At4) 

where the I& are computed assuming the local fin tem- 
perature is equal to that at the fin base. 

Flooded region 
In the flooded fraction of the tube, condensation occurs on 

the fin tip. Because the fms are quite short, a one-dimensional 
conduction model is acceptable. Assuming no heat transfer 
from the sides of the fin in the flooded region, we may 
write the equation for heat conduction in a fin of constant 
thickness, I 

4 = k,&(7-,,~ - T,,)lh (AIS) 

where T,,,., is the fin base temperature, Tw., is the fin tip 
temperature, and h is the fin height. The heat transferred by 
convection from the fin tip is 

4 = U,U’,,- T,,t). (Ale) 

Combining equations (AlS) and (Al(i) and solving for Tw,t 
gives for a rectangular fin (A, = Ab) 

T,., = (Tsv., + Nut T,AI(Nu, + 1) 6417) 

where Nu, = k~h~k~. Substitution of equation (Alf) in equa- 
tion (Al@ gives 

4 = &UT,, - T&I(Nu,+ 1). (Afg) 

Let qw be the heat transfer rate for a tin, having T,, = 
T,, which is given by 

qnwr = &&t(T, - Tw.J (A19) 

where h,, is the condensation coefficient if T,l = T,,. The 
fin efficiency is defined as q/qmu, and is the ratio of equations 
(Al@ and (A19), giving 

rlr = M~,.,(Nu~+ !)I. (A20) 
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Using tiir,L = h&T,,- r,.d and 0 = (T,,--T,), equation 
(A20) may be written as 

‘If = m,4,![4,4(~4 + 111 (A21) 

where the terms rri,., and h,., are for a fin of infinite thermal 
conductivity. The fin tip efficiency may be iteratively deter- 
mined by assuming a fin tip temperature and using equations 
(A15), (A16) and (A21) to check for convergence of the fin 
tip temperature. 

APPENDIX B. CONDENSATION MODES 
ASSOCIATED WITH THE CONDENSATE 

LEVEL A 

Adamek and Webb [16] describe the different modes of 
condensation that exist in the channel of a vertical finned 
plate. These same modes are applicable to the present finned 
tube geometry. The appropriate modes are summarized here. 

The magnitude R(e) varies between R,,, at the top of the 
tube (: = 0) and its maximum value R,,, at ‘4’ = Y,, (z = -_,), 
which is limited to R < s,‘2. Hence, for small fin heights h 
and small fin spacings s, some of the condensation areas may 
vanish. As long as R(z) 6 s/2, the condensate level A remains 
zero and the fin height h (Fig. 3(a)) is equal to the sum of 
the components 

h = R*(z)+r,,(_)+l,,(l)+l,,(z). PI) 

When the R(r) joins at the center of the channel, the con- 
densate level A(:) starts to increase. Then h is expressed by 

h = R*(-_)+I,,(I)+/,,(~)+~~)(~)+A(:). (B2) 

When A(:) > 0, the condensation rate at the fin base is 
assumed to be zero. For this case 

R’ = s/2. (B3) 

Three possible condensation modes may exist on the fin 
side. They are modes A, B. and C as described below. 

Mode A: h-[R*(;J+(o,(-)f12,(l)+A(T)] 3 0. (B4J 

The difference of the terms on the left-hand side yields the 
length 1, ?(I). Mode A occurs for the increments near the top 
of the tube and yields the highest performance. If equation 
(B4) is true. equations (23J-(27) are used to calculate lIz and 
I,,, respectively. 

Mode B: h-[R*(-_)+ll,(s)+I,,(z)+A-_] Q 0. (B5J 

Mode B is initiated following Mode A and is distinguished 
by the condition I,:(r) = 0. Then, 12,(r) is given by 

12,(:) = h-[R*(I)+l,,(=)+A(_)] (W 

rather than by equation (27). 

ModeC: h-[R*(z)+I,,(z)+A(z)] i 0. (B7) 

This mode exists when the condensate thickness (A) is so 
thick that both I,?(z) and 1r3(-_) vanish. Condensation occurs 
only at the fin tip area. Moreover, the circular interface of 
the drainage region may cover the thin tilm area L,, at the 
fin tip. 

Modes D. E and F describe conditions that affect con- 
densation at the fin base. 

Mode D: s/Z--[R*(z)+l,,(:)] L 0. (B8J 

The length I,,(z) is given by the difference of the two terms 
on the left-hand side of equation (B8). When R(z) increases. 
165(:) decreases. When 1&) becomes zero, we attain the 
Mode E. 

Mode E : s/2- [R*(z) +I,,(:)] d 0 (W 

but r5,(:) is not calculated by equation (27). If Mode E 
exists, one should calculate length I,,(z) by 

r,,(r) = s 2--R*(z). @IO) 

When 154(zJ = 0, R*(z) = s/2 and the condensate level 
A(:) begins to rise. Then the condensation at the fin base is 
negligible. This situation is called mode F. 

PREDICTION DE LA CONDENSATION EN FILM SUR DES TUBES HORIZONTAUX 
A AILETTES INTEGRALES 

R&m&-On presente un modele analytique pour la prediction de la condensation en film sur des tubes 
horizontaux 51 ailettes integrales. Ce modile tient compte de la condensation sur toutes les surfaces dans 
les regions noyees ou non, et il inclut I’effet de I’efficaciti de I’ailette. II est base sur des principes simples 
et il permet des calculs a la main ou par ordinateur. II est applicable a des ailettes avec deux profils 
differents : le profil continu special d&it par Gregorig, Adamek, Webb ou la section droite rectangulaire 
ou trapezoidale. Le modtle est valid6 par sa capacite a predire un large domaine de don&s experimentales. 
Ces don&es qui in&tent l’eau, le methanol, le n-pentane, R-l I. R-12, R-22 et R-l 13 sont predites pour 
80 geometries difTerentes de tube dans I’intervalle + 15%. Les predictions de ce modele sont comparees i 

celles donnees par d’autres modeles proposes par Webb et al., Honda et Nozu. et Beatty et Katz. 

BERECHNUNG DER FILMKONDENSATION AUF WAAGERECHTEN INTEGRAL- 
RIPPENROHREN 

Zusammenfassung-In dieser Arbeit wird ein analytisches Model1 zur Berechnung der Filmkondensation 
an waagerechten Integral-Rippenrohren vorgestellt. Das Model1 beriicksichtigt Kondensation an allen 
Oberfliichen in den hberfluteten und nicht tiberfluteten Bereichen. der EinfluB des Rippenwirkungsgrades 
ist ebenfalls enthalten. Das Rechenverfahren ist auf recht einfachen Grundprinzipien aufgebaut und kann 
leicht fiir Berechnungen von Hand oder mit dem Computer angewandt werden. Das Rechenmodell ist fiir 
Rippen mit zwei unterschiedlichen Grundformen des Protils geeignet : einmal die speziellen kontinuierlichen 
Profile, die bereits friiher von Gregorig, Adamek und Webb beschrieben worden sind. zum anderen Rippen 
mit rechteckigem oder trapezformigem Querschnitt. Das Model1 wird mit Hilfe von experimentellen Daten 
in weiten Bereichen bestitigt. Diese Daten wurden mit Wasser, Methanol, n-Pentan. R-I 1, R-12, R-22 und 
R-l 13 ermittelt. Dabei wurden 80 unterschiedliche Rohrgeometrien verwendet, die Ubereinstimmung liegt 
innerhalb + 15%. AbschlieBend werden die Ergebnisse des vorgestellten Modells mit friiheren Modell- 

rechnungen verglichen, nlmlich denen von Webb et al., Honda und Nozu sowie Beatty und Katz. 
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OlIPEjJEJIEHME IUIEHO~HOfi KOH~HCA~M HA CIiOPKE I-OPkWWITAJIbHblX 
OPE6PEHHbtk -ft+t; 

Amur8kuw-IIpeanoxeita amuuftxwxan Monenb MR onpenenemn nnenowoti KoHnewamH Ha 

ctiopKCrOp~trranbwmrOpc6~rpyb.MOncna~8ae?KOHnCHcalwoHa~XUo~p~~XXB 

3aToMewHbIx u Hesa~oMembuo6nacTnx, aTarxc i?@#IerrHsHoixb opc6pcHKn. BTo *e BpeMl Owd 

CCHOIULHB Ha J4OBOJlbHO IlpOCTbtx npHHIPil%U H npHMetIltMa Ma paCWTOB C HCllOJlb30BaHHCM II 60 

RCUOJIMOBBHHII 3BM. Monem apm+temercn ma pe6ep c ne+yMa pazntlr~b~~ OLXOBHYMH npo- 

'&HnaMa: OCO6Oit CUJTOUrOfi (SopMbI, pKHee OlIHCWiHOit rperOpHrOM,knaMeKOM H &66OM, MH MS 

pc6cp C llpSblO~OJlbtIblM Blni TpanCueManaHblM nonepewslMH CerleHHmH. &lGrBaTHOCTb MOllWIH 

nOn'TBep-n~IIpHMCHlrMOCTbIOmnpa~eTa &,Jlb,,lOrO KO,THYCCfBa 3KCllePHMCHTUtbHblXilaHHblX 

lLRK BWU4 H-nCmatra, R-11, R-12, R-22 H R-l 13.3~~ pe3ynbTam nonpeeu nnn 80 pamwwx reohde~- 
Pfl ~py6~ CTOWXmo IIO +lS%. CpaBHABamK pacvem nonaHHoii Monem H no MonensM,pa~ee 

npennolreHabn.tPyaH~np., Xoxma H Hosy,ararxe ~HTTHH Kauohi. 


