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Abstract—This paper presents an analytical model for prediction of film condensation on horizontal
integral fin tubes. The present model accounts for condensation on all surfaces in the flooded and unflooded
regions, and includes the effect of fin efficiency. However, it is based on quite simple principles, and is applicable
to hand or computer calculations. The model is applicable to fins of two different basic profile shapes : the
special continuous profile shapes previously described by Gregorig, Adamek, or Webb, or fins having
rectangular or trapezoidal cross-sections. The model is validated by showing its ability to predict a wide
range of experimental data. The data include water, methanol, n-pentane, R-11, R-12, R-22 and R-113.
These data for 80 different tube geometries are predicted within + 15%. Predictions by the present model
are compared with models previously proposed by Webb er al., Honda and Nozu, and Beatty and Katz.

1. INTRODUCTION

THis PAPER presents a model for prediction of film
condensation on horizontal integral fin tubes. The
integral fin tubes usually have fins of a trapezoidal
or possibly a rectangular cross-sectional shape. How-
ever, Webb et al. [1] and Rudy and Webb [2] have
shown that surface tension drains the fins. This
work showed that the fin profile need not have the
special shapes described by Gregorig [3] or Adamek
{4] for surface tension drainage to occur. Rudy and
Webb [2] and Honda [5] showed that surface tension
also acts to retain a thick layer of condensate on the
lower side of the tube. Webb ez al. [6] and Honda and
Nozu [7] developed theoretical models to predict the
condensation rate on such finned tubes. Webb et al.
[6] assumed that the fin profile may be described by
Adamek’s profile equations [4], while the Honda and
Nozu model assumed a rectangular fin cross-section.
Webb er al. neglected the condensation rate in the
condensate flooded region. Honda and Nozu used a
numerical solution scheme, which included a meth-
odology to predict the condensation rate on the fin
sides and in the base channel for the unflooded and
the flooded regions. Since the Honda and Nozu model
requires numerical integration, it is not amenable to
hand solution.

The present model may be considered to be com-
petitive with the Honda and Nozu model in that it
accounts for condensation on all surfaces in the
flooded and unflooded regions. However, it is based
on quite simple principles, and is applicable to hand

or computer calculations. The model is applicable
to fins of two different basic profile shapes: (1) the
special continuous profile shapes as described by Gre-
gorig [3], Adamek [4], or Webb {8], or (2) fins having
rectangular or trapezoidal cross-sectional shapes.

The model is validated by showing its ability to
predict a wide range of experimental data. The data
include water, methanol, n-pentane, R-11, R-12, R-
22 and R-113. Predictions by the present model are
compared with the models of Webb et al. [6], Honda
and Nozu [7], and Beatty and Katz [9]. Beatty and
Katz were the first to propose a theoretical model for
integral fin tubes. This assumed that the condensate
was gravity drained, and that no condensate retention
existed.

2. DEFINITION OF CONDENSATION ZONES

Figure 1 shows an end cross-section view of the
finned tube. The diameter over the fins is D, and the
diameter at the base of the fins is D,. The interfin
region in the shaded portion of the lower tube cir-
cumference is totally condensate flooded. The flood-
ing half angle ¥, is given by equation (1), which was
independently derived by Rudy and Webb [3, 10} and
Honda [5]

¥o = cos™" [1-40/(Dospg)]. M

The condensation is divided into three distinct
zones.

(1) The unflooded zone: this is the fraction of the
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NOMENCLATURE

area of cross-section of drainage with
circular shape [m?]

cross-sectional area (for heat
conduction) at base of fin [m?]
surface area of fin side [m?]

surface area of tube at fin root {m?]
surface area of fin tip [m?]

total surface area of tube, 4.+ 4, + A,
[m?]

hydraulic diameter, 44/P [m]

tube diameter to the fin root [m]

tube diameter to outside of the fin [m]
friction factor for drainage at fin root
force per unit volume within region L,
[Nm™7]

property group 4kvAT/4 [N}
gravitational constant [m s~
condensing coefficient, A, on fins, A, in
flooded region, A, at fin root
Wm=2K"']

condensation coefficient at the fin tip
Wm~?K~]

height of fin {m]

heat transfer coefficient based on 4,,,
[Wm~*K"']

thermal conductivity of condensate
Wm™ 'K~

thermal conductivity of the fin

Wm 'K

length between points x = i and & [m]
region between points x =fand k
tube length [m]

condensate (flow) rate on region L

kgs™'m~']
condensate generated on fin tip
[kgs'm~']

condensate generated on fin tip for
infinite fin conductivity [kgs™'m™1]
drainage flow rate in z-direction [kg s~ "]
condensation rate in flooded region of
tube [kg s~

condensation rate in unflooded region of
tube [kgs™']

total condensate rate between points
x=iand k [kgs™']

total condensation rate on tube, M+ M;
[kgs™']

fins/m on tube fm~]

fin tip Nusselt number, hh/k,,

wetted perimeter [m}

pressure difference compared to
saturation pressure [N m™7]

total condensation rate on tube, Qpeq
(predicted), O, (experimental) {W]

q heat flow in fin {(equations in Appendix
A) [W]

r local radius of condensate interface [m]

R*  R-—3,,, projection of R on side wall from
point 4 of Fig. 3(c) [m]

R radius of drainage interface at fin root {m]

s space between two adjacent fins, fin
spacing [m]

T, vapor saturation temperature [K}

T, surface temperature, 7, ; (at fin root),
T., (at fin tip) [K]

AT  temperature difference, T, — T, [K}

H fin thickness at the tip [m]

X direction on fin surface from tip to base
{m]

w condensate film velocity [kgs™]

z direction of drainage flow at tube [m)].

Greek symbols

o angle in Fig. 3(c) [rad]

B angle in Fig. 3(c) [rad]

S film thickness in section L [m]

A condensate film thickness in the channel
[m]

n dynamic viscosity of condensate
kgs™'m™Y

e fin efficiency

g temperature difference, T, — 7, {K]

0 angle at fin tip in Fig. 2 [rad]

#(x) derivative of @ with respect to x [K m™'}

9, temperature difference, T, — T, [K]

8,.. temperature difference, T, ,— T, (K]

K curvature of interface [m~]

k’'(s) derivative of x with respect to s [m™’]

A latent heat of vaporization of condensate
Wskg ']

v kinematic viscosity of condensate
[m?s™]

p density of condensate [kg m~~)

o surface tension of condensate [N m™']

1,  wall shear stress [Nm™7%

¥ angle in Fig. 1 [rad]

¥, condensate retention angle in Fig. 1 [rad]

@, o', »” angle on fin tip (Fig. 3) frad].

Subscripts

bot  bottom

drai drainage

fin fin

fi flooded area

sid  side

tip tip

tub  tube

u unflooded area.
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Drop-off Condensate

Zone Flooding

Fi1c. 1. Illustration of condensate retention and definition of
condensation zones. I, Unflooded zone (u) ; 11, flooded zone
(fl) ; I11, drop-off zone.

tube circumference outside the shaded region of Fig.
1. It consists of the fin tips and sides, and the base
tube between the fins.

(2) The flooded zone : the model assumes that con-
densation occurs only on the fin tips in the flooded
zone. Negligible condensation will occur on the liquid
surface in the interfin region, because the interfin
region is totally flooded.

(3) The drop-off zone : as shown by Fig. 1, gravity
forms a heavy pendant of condensate, which insulates
the fin tips. Based on experimental observations, this
is taken to be 10% of the tube circumference.

It is necessary to develop theoretical equations for
condensation in the flooded and unflooded zones.

3. CONDENSATION IN THE UNFLOODED ZONE

3.1. Structure of the model

Figure 2 is a sketch of the finned tube in the
unflooded zone. It defines the geometric dimensions,
the coordinate system, and the condensate flow
regions to be modeled. Figure 3(a) shows a detailed
view of these flow regions. The film surface in Fig.
3(a) is divided into segments L,. The indices ik define
the initial point x = i and the end point x = k of the
region L,. The lengths of these sections are denoted
by the terms /,. The expressions n, define the con-
densation rates between points x = i and k per unit
of the tube circumference (the z-direction). The total
condensation rate on one half of the fin per unit length
in the circumferential direction is

My = My + Mg+ Mgy + 0y g3+ Wiy +Migs.
(2a)

The total condensation rate, m,, is made up of the
partial contributions at the fin tip 1, at the lateral
fin side m,, and at the bottom #,,,. Thus
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Fi1G. 2. Illustration of condensate flow pattern assumed by
the model.

iy = Mgy + Mgy + Mg, = Mgy + Mg, (2b)
where
My, = Moy = Mg+
Mga = Moy = Mgy + My 3+,
Plyoy = Mgs+Msy = Mgy
Mgy = Wy + Mgy = My, (3)

For the analysis of the radius R of interface at the
fin base, we need the expression riy,;, denoting the
sum of all condensation rates, which flow to the fin
base (Fig. 2)

Mgegi = Mg +Ms,. )

All expressions for m, vary in the circumferential
z-direction. Figure 2 shows that the condensate i,
and mgs do not flow to the fin base. Rather, their
drainage direction is determined by gravity force. The
integration of the differential condensation rates
m,(z) from the top of the tube (z = 0) to the cir-
cumferential length z is indicated by the terms M, (z).
Thus

Ma(2) = f (1) . )

If z,=(n—¥,)Dy/2 denotes the unflooded cir-
cumference of the tube in Fig. 1, the total con-
densation rate per one half of the fin is defined by

Mu(zu) = Mlip(zu)+Msid(zu)+Mbot(zu)

= f Mip(2) +115a(2) + 1o (2) dz. - (6)
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F1G. 3. (g) Cross-§ection of fin and root illustrating the defined condensate drainage regions (not to scale).
(b) Detail of fin tip corner: left, rectangular fin; right, trapezoidal fin. (c) Detail of drainage in corner of
drainage channel.

The condensation rate in the unflooded portion of the
tube is given by

M!ub,u = 4N1v1u (7)

where N defines the number of fins on the tube length.

The condensate films are drained either by gravity
or surface tension forces. The key hypothesis of the
model is to identify the forces, which are active for
each region L,. Once the dominant force is identified,
one may calculate the film thickness associated with
the particular L, region. For laminar film conden-
sation, the local condensation coefficient is 4 = k/§,
where k is the thermal conductivity of the condensate,
and ¢ is the local film thickness. Hence, if the local film
thickness can be calculated, the local condensation
coeflicient is easily determined.

3.2. Basic equations for calculation of film thickness

For gravity drained laminar film condensation on
an inclined plate of length /, Nusselt [11] showed that
the local film thickness at x = /is given by

6(1) = [F,-l/pg-cos ¥]"* ®)

where F, = 4kvAT/i. The condensate generated on a
plate of length / is

m(l) = 0.943[(kAT - l/2)*(pg/v) -cos ¥]'"*  (9)

where W is the angle of the plate relative to the vertical
direction.

Now consider calculation of the film thickness,
if surface tension is the dominant drainage force

in region L,. The surface tension induced pressure
gradient is

dp/ds = —~ad(1/r)/ds (10a)

where r is the local radius of the condensate interface.
We will assume that a linear pressure gradient exists
in all such surface tension drained regions. Hence, for
a generalized region L,

dp/ds = fye = —a[(1/r) = (1/r)}/ 1y

where r; and r, are the radii at the beginning and end
of the length [, respectively, and f; symbolizes the
pressure gradient for region L. This simple modeling
concept was initially proposed by Rifert [12] and was
used by Rudy [13] to model the surface tension drain-
age gradient on integral fin tubes.

One may modify equations (8) and (9) toapply toa
surface tension drained plate of length /,.. The gravity
force per unit volume in equation (8) (pg‘ cos ¥) may
be replaced by fi, equation (10b). The length over
which equation (10b) applies, /;, corresponds to / in
equation (8). The result is

5&([.'/() = [Fp(lik/f;'k)]w
m(ly) = 0.943[(kAT/2) ful iV .
tk = 017,01 and 54

(10b)

(1)

ik = 12 and 23.

. AT [ Kk
m(l,,):-/r ) 3.0 dx,

(12a,b)
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Equations (11) and (12) may be used to calculate the
film thickness and condensation rate in each of the
surface tension drained regions L, of Fig. 3(a), if f;
and [, can be defined for each region.

3.3. Specification of forces governing film flow in
regions L,

Figures 2 and 3 will be used to establish the drainage
forces acting in regions L,. The fin shape is shown as
rectangular, but the model may be equally applied
also to trapezoidal fins. The corner of the fin tip is
assumed to be circular with radius R,, as shown in
Fig. 3(a). Hence the interface changes within the
sections Ly, and L, from a circular to a linear
shape, which is associated with a pressure drop of
Apo- = Apo, = o/R, (Fig. 4). Neglecting gravity in
these sections, the film flow is governed by surface
tension force and follows the x-direction.

In region L., the interface is linear and the surface
tension forces are small compared to gravity. Hence
the condensation process is gravity dominated, and
the film flows approximately in the circumferential
direction.

Gravity also dominates in section L,,. If we define
a circumferential angle ¥ = 2z/D, (Fig. 1), then we
may express the forces in the x-direction and the z-
direction by the terms pg cos ¥ and pg sin ¥, respec-
tively. Thus, the direction of the film flow is defined
by the vector (cos ¥, sin ¥).

Between points 2 and 3, the interface changes from
a linear to a circular shape, which is associated with
a pressure drop of magnitude Ap,; = o/R (Fig. 4).
Hence, the condensation process in L,, is governed
by surface tension, and the film flow is assumed to
occur in the x-direction.

The area L, at the fin base is assumed to be the
drainage center. Although the interface changes to a
concave shape, the radius R of curvature remains
constant. So, the pressure drop between points 3 and
4 remains zero, and the drainage flow occurs only in
the circumferential z-direction.

In contrast, between points 4 and 5 the interface
changes from a circular to a linear shape, which is
associated with a pressure drop Ap;s, = o/R. Note that

curvature
1/Ro
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the pressure at point § is higher than at point 4, which
causes the film to flow into the corner.

Finally, the interface in the region Lgs remains
linear, so the flow is gravity dominated, and the film
flows in the circumferential z-direction.

Note that the condensate from regions Lg), L3, L3
and L;, accumulates in the corner at the fin base.
Accordingly, the interface radius in the corner, R,
increases in the :z-direction. So, the lengths [, in
regions L, vary with respect to the variable z.

3.4. Calculation of condensation rates iy, and g,

As shown in Fig. 3(b), the corner of the fin tip is
assumed to be circular with radius R,. In the real case,
the shape may not be exactly circular, but a small
radius R, will exist at the curved fin edge. We will
assume a linear pressure decrease Apy, = /R, and
Apyy- = 6/R, from the center of radius to the lateral
fin wall and to the fin tip, respectively. This results in
the linear curvature gradient shown in Fig. 4 for
regions Ly, and L,,. The film radius becomes infinite
(zero curvature) at the inflection points, 1 and 1.
Using equation (10b), we obtain for the pressure
gradients

Jor =6/Roloy, for = 6/Rolyy.  (13a,b)
The angle w is equal to the change of curvature over
Iy~ As shown by Fig. 4, this curvature change is the
area under the triangle bounded by 1/R, and /,,.
Thus, lengths /;, and /- are calculated by
loy =2Ry’, Iy = 2R w. (14a,b)
The case of rectangular and trapezoidal fin shapes
are shown in Fig. 3(b). For rectangular fins,
o = o’ = n/4, and for trapezoidal fins, w = n/4, and
o’ = n/4—w". Substitution of equations (13a) and
(14a) in equations (11) and (12) gives

801(x) = LI89[F,(R3w'x/0)] ",

Sor(x) = LI8Y[F,(Riwx/a)]"*.  (15a,b)

Application of equation (12) gives

“'sz."ll‘ les ‘l

¥ 01
IOI -

ha2 "*‘1"23“
I\B

3
all

48/5 b x

FiG. 4. Curvature of the condensate film in the drainage regions defined in Fig. 3.
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fitgy = 1.332[(KATIA) (6 Row  W)]14,

Hioy = L332[(KAT/AY (o R’ /W)} . (16a,b)

3.5. Calculation of radius R at the fin root
The determination of the condensation terms 7z ,,
M43, M54 and g depend on the condensate radius R
at the fin root. Gravity drains the condensate at the
fin root in the circumferential z-direction. This mass
flow rate is defined by the continuity equation
M) = pew(z) A(2) an
where the average film flow velocity w(z) in the cir-
cumferential z-direction is governed by

ty =f(pw?/2) = (A/P)pg -sin ¥ (18)

and

f=12/Re = 12v/(dyw) 19
where 1, is the wall shear stress on the surface area
P-dz balanced by the film weight [4-dz-pg-sin ¥},
with wetted perimeter P = 2R and cross-section 4 =
0.215R? for rectangular fins. The expressions for
A and P are calculated from the geometry of the
circular interface at the fin base. The number 12 in
equation (19) is taken from Thomas [14]. From equa-
tions (17)-(19) we obtain

w = (gd *sin V)/24v 20

and

M(2) = 0.0017[pg-sin ¥ - R*(2)/v] Q@n
where dy = 44/P = 0.43R.

Note that the drainage mass flow is related to the
fourth power of R(z), so imprecision in the calculation
of M(z) will yield a very small error in R(z). If the fin
has a radius at the root, the shape at the base is circular
rather than rectangular, so we may replace the number
12 in equation (19) by the number 14.25, as specified
by Honda et al. [15]. A finite element analysis for the
determination of the drainage mass flow was per-
formed to verify both numbers. For the rectangular
and circular cases, we obtained the numbers 13.2 and
15.3, respectively. The radius R is obtained by equat-
ing equation (21) with the sum of the condensation
rates that flow into the fin root region, My,

From equations (4) and (21) we obtain

4 1R

R(z) =[— . L ritgg(8) + 115, (1) dt
0.0017pg sin (j)

(22)

where n':s; = I?‘?o;‘*'"’hg'{"”’!z;.
Unfortunately, the expressions #1,,, #ity; and s,

T. Apamex and R. L. Wess

depend on R, which leads to a complicated iterative
solution. However, a good approximation is possible
by noting that 14, is the main contributor to 11, and
that R(z) is not very sensitive to M. This procedure
involves the following steps.

(1) Estimate n1,,; = 1.3m,,.

(2) Calculate R(z) by equation (22) with the inte-
grand replaced by 1.3m1,4,(1).

(3) Analyze the lengths [,,(2), 1,3(2), £54(2), {es(2),
l;-2(2) and the corresponding condensation rates
() using R(z) obtained from the modified equation
(22). This allows calculation of riy and m15,.

(4) Using the known ri;, and mig,. use equation
(22) as given to recalculate R(z).

The analysis for step 3 above is described in the
next section.

3.6. Condensation rate on the fin and base

Calculation of the condensation rate on the sides
and at the fin base requires specification of /,5, /3, lss,
lss and R illustrated in Fig. 3(a). The model assumes
that /,, and /5, are surface tension drained, and that
li 114 and Iy are gravity drained. The basis of these
assumptions is illustrated in Fig. 4. The /;, which have
constant curvature are gravity drained. With these /;
and R known, we may use equations (12) and (16) to
calculate the associated . The [; terms may be
related to the fin dimensions ¢, &, 0 and the fin spacing
s as shown below

(23)
(24)

t2 = Ry+ly»
h=cos O(Ry+1+ 1+ R¥+A)

where A is the condensate thickness at the fin root. At
the fin root

S/‘2=/lSin 9+R*+154+155 (25)

where R* = R—8;, = R cos f, as shown by Fig. 3(c).
Using the linear pressure gradient assumption, the
area of the x — /5, triangle in Fig. 4 yields the relation
B = (I54/2)(1/R), where B is the area under the tri-
angle. Thus

R* = Rcos {({5./2R). (26)
The Appendix of Adamek and Webb [16] shows that
Ly =I5, = 4[F,R*/6]' °. 27

Using the known R, and /5, /5, and R* from equa-
tions (26) and (27), one may solve equations (23)~
(26) for /-5, l;and /5.

With the /, known, one may directly write the forces
fi acting on each L, region. Linear surface tension
pressure gradients acting on Loy, Ly, Ly and Ly,
yield

Jarr = 0/Rylo, (13a)
Jor = 6/ Rolyy- (13b)
f23 = oiRIly; (28)
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Ssa =06/Rls,. (29)

Region L,, is gravity drained. The gravity force
components in the x- and z-directions (pg-cos ¥
and pg-sin ¥, respectively) change with the cir-
cumferential angle ¥. A rigorous analysis would
require solving for the film thickness in the streamline
direction, resulting from the two force components.
However, previous analysis by Adamek [17] has
shown that this complication is not warranted. For a
condensation process governed by two perpendicular
forces, the analysis showed that the calculated film
thickness in one coordinate direction is nearly inde-
pendent of the other force. The present model will
calculate the x-component of the average gravity
force, which gives

2 [~ 2
f|z=_J pg cos Y dy = —pg. (30)
T {o T

The gravity force in regions L, and Lgs act on the
fin tip and on the base tube, respectively. The single
gravity component is pg *sin ‘¥, which results in

(3D
(32)

frz=pg-sin'¥
Ses = pg-sin'¥.

The film thickness equations for the surface tension
drained regions is obtained by substituting the /,, and
S terms in equation (11), giving

801(x) = 2F, Ri'x/0) " (15a)
S0 (%) = F, Riwx/a)"* (15b)
823(x) = [Bvitoa RIns/0) 3 + F,RI,yx/a]"*  (33)
854(x) = (F,Rlsqx/a) V4. (34)

Equation (33) includes two terms on the right-hand
side. The first term accounts for the fact that L,
receives flow from region L,,. The supporting deri-
vation of equation (33) is provided in Appendix 1 of
Adamek and Webb [16].

The film thickness for the gravity drained regions
is obtained by substituting the /, and f; terms in
equation (8) giving

/ = 2z R
in| —)d
[
Spy =0,2(2) = \; AL
V7 G

82 = {(3vnrho,/2pg)""3+[Fp(n/2pg)x]} 14

(35

(36)

R Ll (G)e) )"

N . {22\\¥? '
(o (5)

d¢s = dgs(2) =

(37
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Equation (36) also contains two terms on the right-
hand side. This is because L,, receives condensate
from L,.

With equations for §, specified, the condensate gen-
erated in each L, may be calculated. Equation (12a) is
used for surface tension drained regions Ly, Ly, and
Ls, Regions L,, and L,; receive condensate flow
from upstream. Hence, their condensation rates are
calculated using equation (12b), with §,(x) given by
equations (33) and (36). Regions L,.» and L, are
gravity drained in the z-direction. Their condensation
rates are given by equation (5) with ri,(¢) = [, (1)*
AT/ik(d,(r) and 3y from equations (35) and (37).

The concave radius R varies in the circumferential
direction (z). Hence, m -5, 2,5, ntss, H1ss and riags will
vary in the z-direction. Evaluation of these terms will
require incremental calculations.

3.7. Integration over z in the unflooded region
The total z-length over which the solution is
required is

2y = Do(n—¥y)/2. (38)

We will perform the integration by solving the i,
equations over P-increments in the z-direction and
calculating the total condensation rate M; in each
increment. The total condensation rate in the un-
flooded regions is the sum of the P, values for each
increment. The integration will start at the top of the
tube (z =0), and the values of R and 4, will be
assumed constant within the increment. Assuming
that the #gy+ s, = 1.3r14;, equation (22) simplifies
to equation (39) for the initial estimate of R for the
first z-increment

v I 1/4
R(I) = lim —_—-—~2— 1.3”‘1(“ dt
) z\ Jo
0.0017pg sin (E)
_ {v1.3mq, D, 174
“\0.0017p92) - (39)
Equation (39) includes the approximation
lim -2~ =1. (40)
y=osiny

With the estimated R for the first increment known,
equations (23)~(27) are solved for R* and the required
Ix. The corresponding f; and &, are then obtained
from equations (13a), (13b), (15a), (15b), and (28)-
(37). Application of the previously specified equations
for I, yields the ri, values. Finally, summation of the
i, provides M, for the first z-increment. For greater
precision, one may repeat the calculation for the first
increment using equation (22) to calculate R.
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The starting value of R for the second z-increment is
calculated using the converged m,, + 1, in equation
(22). This procedure is repeated for ail succeeding z-
increments. Finally, the total condensation rate in
the unflooded region (M,), per one half fin is the
summation of the incremental M, values. The con-
densation rate on the unflooded portion of the total
tube length is

M!ub.u = 4NL1‘;[u

where N is the fins/m and L is the tube length.

(41

3.8. Inclusion of fin efficiency

The above analysis has assumed that AT = con-
stant on all of the L. The accuracy will be improved
by accounting for the change of fin temperature along
the fin length, thus accounting for fin efficiency, 7.
This development is presented in Appendix A. Then,
the condensation rate on the fin is expressed by

T. ApaMEK and R. L. WEss

Mﬁn = 'Ir‘(M:':'+MO|'+M01 +/V[,2+Jl‘123), (42)

The model assumes that condensation regions L,
and L, both exist on the fin sides. However, if the
tube diameter is large, or the condensation rate is
high, it is possible that either of these two regions may
not exist on some portion of the tube circumference.
Thus, as the tube circumference is progressed, R, ds,
and 45 will increase. The first region to disappear is
L,;, followed by L,,. Appendix B provides criteria
for determination of which regions will exist. These
criteria may be included in the computer program.

It is probable that AT in the flooded and unflooded
regions are different. It is possible to account for this
difference. However, one must expand the concept of
the model to account for circumferential conduction
in the tube wall. This also requires specification of a
tube side heat transfer coefficient. Honda and Nozu
[7] outlined the methodology for doing this.

45+
A°/s )
o = Wanniarchenr et ai (1386)
O = Masuda et al. (1988} -
Water » = Wanniarchch: et al {198€)
{Vacuum runs)
30 G = Katz-Geist {19471
Methanot + = Honde et gl {1987}
n-Penthan * * Beatty-Katz {1547
a
s
b 4
15 a3 + »
- o
—
°\° o
& o
v
o or ¥ * v o,
x A A4 A .
1 a © o .
@] a .‘n ' . ..:' + M
Q 0 b + + + —+ St
i i) e 10 2000 . .
3 a P o N(fins/m}
2 At
[«K A +
e ¢ . 3
. ’
' v
XX .
- a
-5 Py
~ 30 ® = Webb et ul (1985)
R1i ¥ = Sukhatme {1987}
.. ™ = Carnavos {1980)
R12 A = Henrici [1961)
R22 ¥ = Beatty-Katz (1947}
Jo = Marto et al.(1988]
R113<4 ¢ = Masudaoetal {1985}
_i,5- | ® = Honda etal (1987)

FiG. 5. Evaluation of the ability of the proposed model to predict the condensation rate on 80 tube
geometries for seven fluids. (Qprea — Cexp)/Cexp Vs fins/m.
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4. CONDENSATION IN THE FLOODED
REGION AND THE TOTAL CONDENSATION
RATE

As shown by Fig. 2, the interfin region is totally
flooded with condensate for ¥ > W,. However, con-
densation will occur on the fin tips. Further, it is
assumed that the previously described drop-off zone
accounts for 10% of the tube circumference. The fin
tips are covered with a heavy condensate thickness,
so no condensation will occur on the fin tips. The
fraction of the flooded region outside of the drop-off
zone is called the ‘active’ flooded region. The con-
densation rate in the active flooded region, per one

half fin, is given by
My = (Do/2) (¥ —0.17) (11 .o +1itg)).  (43)

Having computed the total condensation rate in the
unflooded region, M, and the flooded region, My, the
total condensation rate on the tube is

My, = 4NL(M,+ Mp). (44

The heat transfer rate is Q = M,,,/A. The heat trans-
fer coefficient may be derived from the predicted value
of M,,,. This is done as follows:

Aoy = Q/(AzubiA T)

where A, is the total surface area and is composed
of

45)

Ay = NL(A;+ A+ 4,) (46)

and 4, A, and A, are the surface areas of the fin side,
root and tip, respectively.

Equation (45) assumes n; = 1.0. If the fin efficiency
is not one, one should calculate the heat transfer
coefficients associated with the fin (hy), root (h,) and
flooded (k) regions. The surface efficiency is then
defined as

1 = [(nchcAe+hA)(m—F,)
+ha A, (Po—0.10))/(4;: + A4,). (47)

Equation (47) assumes that the fin efficiency in the
flooded region is one. If n; < 1, one should divide
equation (45) by the surface efficiency, #.

5. VALIDATION OF THE PREDICTIVE MODEL

Figure 5 shows the ability of the model to predict
the condensation rate on horizontal integral fin tubes.
The data bank includes data on 80 tube geometries
from 14 different investigators and seven different
fluids. Table 1 lists the data sources, the fluids, and the
key fin dimensions. The table also shows the AT for
the predicted point, and the calculated fin efficiency
at the point. The fluids include water (high surface
tension) and refrigerants (low surface tension). The
range of the geometries and fluids tested include :

(1) Fluids: water, methanol, n-pentane, R-11,
R-12, R-22 and R-113.
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F1G. 6. Evaluation of the ability of various models to predict
the R-113 data of Marto et al. [19] on | mm high x | mm
thick rectangular fins, for 200-800 fins/m.

(2) Fin spacing at base: 0.06-10 mm-.
(3) Fin height: 0.29-3.6 mm.
(4) Fin thickness: 0.06-1.0 mm.

Figure 5 shows the ratio (Qurea— Qexp)/Qerp VS
fins/m, where subscripts pred and exp are the pre-
dicted and experimental values, respectively. The
model was adapted to account for the appropriate fin
shape (trapezoidal or rectangular) and fin efficiency
was included in the calculation. Except for six data
points, the data are predicted within +15%. We feel
that this agreement with the data is very good, con-
sidering the following uncertainties in the data:

(1) The fin tip radius R, was not generally given by
the authors. The predictions assumed R, = 0.05:.

(2) Some of the authors did not precisely describe
their fin geometry. Missing dimensions included the
fin tip radius, the radius at the fin root, and the spacing
at the fin root.

(3) In general, the fin thermal conductivity was not
given for the tubes, all of which were copper. We
assumed a value of 350 Wm~—2K~!,

(4) Uncertainty regarding the fluid properties used
by the different investigators. Krauss and Stephan [18]
have observed that there is a significant difference in
the reported property data of the refrigerants. For
example, published thermal conductivity data for
R-113 at 300 K differs from 0.67 to 0.9 Wm~—2K~ .

Figures 6 and 7 show the ability of the model to
predict the effect of fin spacing for 1.0 mm fin height
fins of rectangular cross-section for the R-113 data of
Marto et al. [19]. Figure 6 is for 1.0 mm fin thickness,
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FiG. 7. Evaluation of the ability of various models to predict
the R-113 data of Marto et al. [19] on 1 mm high x 0.5 mm
thick rectangular fins, for 400-1333 fins/m.

and Fig. 7 is for 0.5 mm thickness. The ordinate is the
enhancement ratio Q/Q,, where Q, is for a plain tube
of outside diameter D,. The value of AT is the same
for the plain and finned tubes. The present model
shows excellent ability to predict the data. Also shown

fe Tige £ and 7 avs mredictione for tha o
in rigs. 6 and 7 are preaictions ior tne models of

Honda and Nozu {7}, Webb et al. [6] and Beatty and
Katz [9]. The Beatty and Katz model assumed gravity
drainage and no condensate retention. The present
model is superior to the other models. The figures also
show that the highest performance occurs for fin
spacings in the range of 0.5 mm. For the same fin
spacing, the 0.5 mm thick fins give higher perform-
ance. This occurs for two reasons: (1) the condensate
retention angle is larger for the thicker fins, and (2)
because the fins/m is less for the greater fin thickness.
Figure 6 shows that the increasing condensate reten-
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FiG. 8. Evaluation of the ability of the proposed model to
predict the R-113 data of Masuda and Rose [20] on 1.6 mm
high x 0.6 mm thick rectangular fins, for 600-1000 fins/m.

tion angle causes a smaller enhancement ratio for the
s = 0.25 fins than for the s = 0.5 mm fins. As the fin
spacing decreases, for constant fin thickness, there is
a greater possibility for a thick condensate layer to
exist at the fin base. Therefore they will be negligible
on the root dimension of the tube.

Figure 8 shows that the model does an excellent job

of predicting

[20]. These fins have a rectangular cross-section.

Figure 9 compares the predicted and experimental
Q vs fin spacing for the steam data of Wanniarachchi
et al. [21] and Yau et al. [22). These data are for
rectangular fins having & = ¢ = 1 mm. The greatest
uncertainty in the prediction occurs for fin spacings
at which the interface root radius (R) approaches s/2.
As the fin spacing is reduced, condensation on the
tube root surface becomes negligible, whereas at a
higher fin spacing there is a relatively high conden-
sation on the root surface.

The steam data of Wanniarachchi er al. [21] are
used to validate the ability of the model to predict the
effect of fin height for 1.0 mm fin spacing and thick-
ness. The excellent agreement validates the use of
equation (32) to predict the drainage in region Lg; by
a gravity drained model. Again, the present model
shows better predictive ability than the other models,
as shown in Fig. 10.

tha R_112 data af Macnda and Raca
LI KR-115 €ata Of Miasuca angd KRoese

Batc! investigater

O | wannarcreni of 5l (1988} atm
4 | warnigroxhi et ol (19801 tvac )
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) 7 ) 9 tmmj 0

s (mm)

FI1G. 9. Evaluation of the ability of the proposed model to predict the steam data of Wanniarachchi et al.
{211 and Yau et al. {22] on 1 mm high x 1 mm thick rectangular fins, for 95-1000 fins/m.
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Data:Morta et al {1988) 5:=10mm
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F1G. 10. Evaluation of the ability of various models to predict
the R-113 data of Marto ez al. {19} on | mm rectangular fins,
for 0.5, [, 1.5 and 2 mm fin heights.

6. CONCLUSIONS

(1) This paper presents a simple, analytically based
model to predict the condensation coefficient on hori-
zontal, integral fin tubes having fins of rectangular or
trapezoidal cross-section. The model divides the fin
profile into severa! surface tension or gravity drained
regions.

(2) The model was validated by evaluating its ability
to predict the data of seven different fluids on 80
different finned tube geometries. The model was
shown to predict 74 of the tubes within +15%.

(3) Theoretical relations are also provided to
account for the effect of fin efficiency in the cal-
culations.
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APPENDIX A. FIN EFFICIENCY FOR
RECTANGULAR OR TRAPEZOIDAL FINS

Analytical expressions for the temperaturs distributi.on in
rectangular fins are developed. The results can be applied to
trapezoidal fins by using the average fin thickness. Separaie



Film condensation on horizontal integral fin tubes

fin efficiency expressions are required for the flooded and the
unflooded regions.

The following assumptions were used to define the prob-
lem and simplify the solution:

(1) Steady state heat transfer.

(2) One-dimensional heat conduction in the fin.

(3) The vapor surrounding the fin is saturated and of
uniform temperature.

Unflooded region

Fin efficiency calculations usually assume the heat transfer
coefficient is constant over the fin length. We do not use this
assumption. Surface tension drained condensation typically
has large heat transfer coefficients at the fin tip, and small
heat transfer coefficients at the fin root. The assumption of
a constant heat transfer coefficient will overpredict the heat
transfer to the fin. Qur analysis calculates the local con-
densation coefficient as k/8(x), where 3(x) is the local con-
densate film thickness.

An energy balance on a differential element of the rect-

angular fin yields
t{dé k
"*z(dx ) =50
where k, is the thermal conductivity of the fin, 7 is the fin
thickness, and 8 = T~ T,. Equation (Al) states that the
heat of condensation rate entering the differential element is
equal to the difference between the heat conducted into and
out of the incremental volume.
Equation (Al) is first soived for region Ly, with x
measured from point 0. Solving equation (A1) for the tem-
perature gradient in the fin at location x gives

de 2k i{* 8
&k F

The film thickness §,,(x) in region L,, is given by equation
(15a) in the text. Recognizing that both x and AT = § are
functions of x, we write equation (15a) as

1 41{ £ 1/4
Soi(®) = (7;—15”& 6(x) dx) )

Substitution of equation (A3) for 4(x) in equation (A2) gives

o _ 2% ffudp (0@ \"
i ol -

W Jo ( j ’ () d‘r)m
{13

Let the grouping of constants in equation (A4) be defined
as

dé

e +de dx

(AD

(A2)

(A3)

(A4

o = E Sordp Y
0T ko t\ 4kn ¥,
Evaluation of the integral on the right side of equation (A4)

gives
X x 3/4
f L R—Y =5U 8() de} Y
o (4 i 3 o
(J‘ () dt)

0

(A5)

Substitution of equation (A6) in equation (Ad) gives the
following differential equation

1 \v3
F(x) =c, (8.(_;}:) 8(x) (A7)

where

(A8)
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Substituting p{x(6)] = #(x) inequation (A7) and integrating
from x = 0 yields
dé .
p) = ok 3 + e, (82 -03) (A%

where p, and 8, denote the initial conditions at the fin tip
x=0

_ 48 g +riyy)
Po=gl .= kot (Al0)
and
8, = AT(x = 0). (All)

The relation between the temperature difference 8 = T,,,—
7, and the x-coordinate is obtained by substituting equation
(A9) in equation (A12) and performing the integration

g gL
x( } = ﬁo;’—(g—)de.

When the heat flow in the fin crosses from region L,, into
region L,,, we start the analysis again, replacing the £, and
dq; by fi; and &,,. The film thickness formula for é,, also
contains an additional constant, which accounts for the film
thickness at point x = /,,. However, this constant is cancelled
by the differentiation process, hence the analysis for Ly, is
analogous to that for L,,.

Similarly, when the heat flow within the fin crosses the
Li~L,; boundary, we replace f,, and 8,, by f5; and 8,5, If
wedenote the heat flow inthefinat point 3 (x = o+, + 13}
by ¢.. {actual ¢) and compare to g, {maximum ¢ for zero
temperature gradient in the fin), we obtain the fin efficiency,
which is defined as

(A12)

M0 = Gaor/Gnas- (Al13)
The g is given by
(A14)

where the m, are computed assuming the local fin tem-
perature is equal to that at the fin base.

Gmax = (g +Higy -+t + 813+ W23} A

Flooded region

In the flooded fraction of the tube, condensation occurs on
the fin tip. Because the fins are quite short, a one-dimensional
conduction model is acceptable. Assuming no heat transfer
from the sides of the fin in the flooded region, we may
write the equation for heat conduction in a fin of constant
thickness, ¢

q = kwAh(TwJ - wx)/k (A‘S)

where T, is the fin base temperature, T, is the fin tip
temperature, and 4 is the fin height. The heat transferred by
convection from the fin tip is

g =hA(To—T.,). (Al6)

Combining equations (A15) and (A16) and solving for T,
gives for a rectangular fin (4, = 4,)

Typ = (Tae+ N To0) [ (Nt + 1) (A17)

where Nu, = hh/k,. Substitution of equation (A17) in equa-
tion (A16) gives

g = hA(Ta— To Y (Nu+ 1). (A18)

- Let gy, be the heat transfer rate for a fin, having T, =
T, ., which is given by

Gmax = Mo AT s — Tos) (Al9)

where k, , is the condensation coefficient if T, = T,,. The
fin efficiency is defined as g/¢p,,, and is the ratio of equations
(A18) and (A19), giving

s = kb (Nu+ D] (A20)
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Using mi = hd (T —T.) and 8 = (T, —T,), equation
(A20) may be written as

Ne = M B e /[ o 0(Nu + 1)] (A21)

where the terms m, , and A, are for a fin of infinite thermal
conductivity. The fin tip efficiency may be iteratively deter-
mined by assuming a fin tip temperature and using equations
(A15), (A16) and (A21) to check for convergence of the fin
tip temperature.

APPENDIX B. CONDENSATION MODES
ASSOCIATED WITH THE CONDENSATE
LEVEL A

Adamek and Webb [16] describe the different modes of
condensation that exist in the channel of a vertical finned
plate. These same modes are applicable to the present finned
tube geometry. The appropriate modes are summarized here.

The magnitude R(z) varies between R, at the top of the
tube (= = 0) and its maximum value R, at ¥ = ¥, (z = =),
which is limited to R < s/2. Hence, for small fin heights 4
and small fin spacings s, some of the condensation areas may
vanish. As long as R(2) < s5/2, the condensate level A remains
zero and the fin height & (Fig. 3(a)) is equal to the sum of
the components

h=R*2)+10,(2)+112(2) +123(2). (B1)

When the R(z) joins at the center of the channel, the con-
densate level A(z) starts to increase. Then h is expressed by

h=R*2)+1(2)+1:(2)+1:(2) +A(2). (B2)

When A(z) > 0, the condensation rate at the fin base is
assumed to be zero. For this case
R* = 5/2. (B3)

Three possible condensation modes may exist on the fin
side. They are modes A, B, and C as described below.

T. ApaMek and R. L. WeBs

Mode A: A—[R*(z)+15 (D) +15(2)+A(2)] 2 0. (B4)

The difference of the terms on the left-hand side vields the
length /,,(z). Mode A occurs for the increments near the top
of the tube and yields the highest performance. If equation
(B4) is true, equations (23)—(27) are used to calculate /,, and
{53, Tespectively.

Mode B: A—[R*(z)+{::()+ 161 (2)+Az] < 0. (B3)

Mode B is initiated following Mode A and is distinguished
by the condition /,,(z) = 0. Then, /;,(z) is given by

1(2) = h=[R*(2)+ 16, (2) + A(2)] (B6)
rather than by equation (27).
Mode C: A—[R*(z)+/,, () +A(z)] £0. (B7)

This mode exists when the condensate thickness (A) is so
thick that both /,,(z) and /,;(c) vanish. Condensation occurs
only at the fin tip area. Moreover, the circular interface of
the drainage region may cover the thin film area L, at the
fin tip.

Modes D, E and F describe conditions that affect con-
densation at the fin base.

Mode D:  s/2—[R*(z)+/:,(2)] = 0. (B8)

The length /¢5(z) is given by the difference of the two terms
on the left-hand side of equation (B8). When R(z) increases.
l¢s(z) decreases. When /4(z) becomes zero, we attain the
Mode E.

Mode E: s/2—[R*(2)+/,(2)] <0 (BY)
but /5,(z) is not calculated by equation (27). If Mode E
exists, one should calculate length /5,(z) by

Li4(z) = s/2—R*(2). (B10)

When /5,(z) =0, R*(z) = 5/2 and the condensate level
A(z) begins to rise. Then the condensation at the fin base is
negligible. This situation is called mode F.

PREDICTION DE LA CONDENSATION EN FILM SUR DES TUBES HORIZONTAUX
A AILETTES INTEGRALES

Résumé—On présente un modéle analytique pour la prédiction de la condensation en film sur des tubes
horizontaux 4 ailettes intégrales. Ce modéle tient compte de la condensation sur toutes les surfaces dans
les régions noyées ou non, et il inclut I'effet de l'efficacité de I'ailette. Il est basé sur des principes simples
et il permet des calculs 4 la main ou par ordinateur. Il est applicable 4 des ailettes avec deux profils
différents : le profil continu spécial décrit par Gregorig, Adamek, Webb ou la section droite rectangulaire
ou trapézoidale. Le modéle est validé par sa capacité 4 prédire un large domaine de données expérimentales.
Ces données qui incluent I'eau, le méthanol, le n-pentane, R-11, R-12, R-22 et R-113 sont prédites pour
80 géométries différentes de tube dans I'intervalle +15%. Les prédictions de ce modéle sont comparées a
celles données par d’autres modéles proposés par Webb et al., Honda et Nozu, et Beatty et Katz.

BERECHNUNG DER FILMKONDENSATION AUF WAAGERECHTEN INTEGRAL-
RIPPENROHREN

Zusammenfassung—In dieser Arbeit wird ein analytisches Modell zur Berechnung der Filmkondensation
an waagerechten Integral-Rippenrohren vorgestellt. Das Modell beriicksichtigt Kondensation an allen
Oberfiichen in den berfluteten und nicht iberfluteten Bereichen, der EinfluB des Rippenwirkungsgrades
ist ebenfalls enthalten. Das Rechenverfahren ist auf recht einfachen Grundprinzipien aufgebaut und kann
leicht fiir Berechnungen von Hand oder mit dem Computer angewandt werden. Das Rechenmodell ist fiir
Rippen mit zwei unterschiedlichen Grundformen des Profils geeignet : einmal die speziellen kontinuierlichen
Profile, die bereits frither von Gregorig, Adamek und Webb beschrieben worden sind, zum anderen Rippen
mit rechteckigem oder trapezformigem Querschnitt. Das Modell wird mit Hilfe von experimentellen Daten
in weiten Bereichen bestitigt. Diese Daten wurden mit Wasser, Methanol, n-Pentan, R-11, R-12, R-22 und
R-113 ermittelt. Dabei wurden 80 unterschiedliche Rohrgeometrien verwendet, die Ubereinstimmung liegt
innerhalb + 15%. AbschlieBend werden die Ergebnisse des vorgestellten Modells mit fritheren Modell-
rechnungen verglichen, nimlich denen von Webb et al., Honda und Nozu sowie Beatty und Katz.
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OINPEAEJEHUE [UTEHOYHON KOHAEHCALMM HA CBOPKE IOPM3OHTAJIbHBIX
OPEBPEHHbBIX TPYB

Amsoramms—TIpeioxeHa aHaNMTHYECKAs MOACIb [UIA ONPCACNCHHA MNCHOYHON KOHIEHMCAUMM Ha
c6opxe ropH3OHTANILHBIX OpeSpeHHBIX TPYG. Molenh yURTHIBACT KOHACHCALMIO HA BCEX IOBEPXHOCTAX B
3aTOMNEHHBIX H HE3ATOMCHHEIX 06macTax, a Takxe pdexTHBHOCTL Opebpenna. B To xe BpeMs oHa
OCHOBaHA Ha JOBOJLHO MPOCTHIX NPUMHUMNAX M MPHMEHHMA A/ PAcieToB ¢ HCMOAB3OBanHEM H Ge3
ncnonb3osanus IBM. Monems npumensercs ans pebep ¢ AByMS PassIHMHLIMH OCHOBHBIMH MpO-
dunamu: ocoboit crnowno# dopmu, paree omucannoit [peropurom, Anamexom u BeG6om, wnu ans
pebep ¢ NPAMOYTONBHLIM KM TPANCUCHAANLHBIM NONCPCIHBMH CEYEHHAMA. AJCKBATHOCTH MOJICTH
TIOATBEPAKAACTCA €€ NPHMEHHMOCTHIO IUTA PacueTa GOJIBIIOro KOJMHYECTBA IXCNCPHMEHTANLHBIX NAHHBIX
Ans poaH, H-nentana, R-11, R-12, R-22 u R-113. 34 pesyasTaThl noayueHut 11 80 pa3THYHbIX reOMCT-
puit TpyGst ¢ TOUHOCTBIO 10 + 15%. CpaBHKBAIOTCR pacveThi O NAHHOR MOJENH H MO MOJENAM, PaHee
npeanoxetunivM Pyan u ap., Xouna u Hosy, a Taxxe burru # Kauom.
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